Skip to main content
Log in

Sulphur and peroxide vulcanisation of rubber compounds — overview

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Vulcanisation is a process of transforming a plastic rubber compound into a highly elastic product by forming a three-dimensional cross-linked network structure in the rubber matrix. Many systems have been developed to vulcanise rubber compounds, among which sulphur and peroxide curing systems remain the most desirable. The application of sulphur systems leads to the forming of sulphidic cross-links between elastomer chains, while carbon–carbon bonds are formed in peroxidecuring. Both vulcanisation systems provide certain benefits to the cross-linked rubber articles, but also some disadvantages. The present work seeks to provide an overview on both vulcanisation systems; their composition, possibilities of their application, reaction mechanisms, structure of the cross-links formed and the main feature of the final cross-linked materials — vulcanisates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi, S. A., Kuruvilla, J., Thomas, M., Volker, A., & Sabu, T. (2003). Studies on accelerated sulphur vulcanization of natural rubber using 1-phenyl-2,4-dithiobiuret/tertiary butyl benzothiazole sulphenamide. European Polymer Journal, 39, 1451–1460. DOI: 10.1016/s0014-3057(02)00382-8.

    Article  CAS  Google Scholar 

  • Akiba, M., & Hashim, A. S. (1997). Vulcanization & crosslink-ing in elastomers. Progress in Polymer Science, 22, 475–521. DOI: 10.1016/s0079-6700(96)00015-9.

    Article  CAS  Google Scholar 

  • Alvarez Grima, M. M., Talma, A. G., Datta, R. N., & Noordermeer, J. W. M. (2006). New concept of co-agents for scorch delay and property improvement in peroxide vulcanization. Rubber Chemistry & Technology, 79, 694–711. DOI: 10.5254/1.3547961.

    Article  Google Scholar 

  • Alvarez Grima, M. M. (2007). Novel co-agents for improved properties in peroxide cure of saturated elastomers. Ph.D. thesis, University of Twente. Enschede, The Netherlands.

    Google Scholar 

  • Babu, R. R., Singha, N. K., & Naskar, K. (2010). Influence of 1,2-polybutadiene as coagent in peroxide cured polypropy-lene/ethylene octene copolymer thermoplastic vulcanizates. Materials & Design, 31, 3374–3382. DOI: 10.1016/j.matdes. 2010.01.053.

    Article  CAS  Google Scholar 

  • Baranwal, K. C., & Stephens, H. L. (2001). Basic elastomer technology (1st Ed). Akron, OH, USA: Rubber Division, American Chemical Society.

    Google Scholar 

  • Basfar, A. A., Abdel-Aziz, M. M., & Mofti, S. (2002). Influence of different curing systems on the physico-mechanical properties and stability of SBR and NR rubbers. Radiation Physics & Chemistry, 63, 81–87. DOI: 10.1016/s0969-806x(01)00486-8.

    Article  CAS  Google Scholar 

  • Bateman, L., Moore, C. G., Porter, M., & Saville, B. (1963). Chemistry of vulcanization. In L. Bateman (Ed.), The chemistry and physics of rubber-like substances. London, UK: Maclaren and Sons Ltd.

    Google Scholar 

  • Bloch, G. A. (1972). Organic accelerators for vulcanization of elastomers (2nd Ed.). Leningrad, Russia: Chimija.

    Google Scholar 

  • Blow, C. M., & Hepburn, C. (1981). Rubber technology & manufacture (2nd Ed.). London, UK: Butterworth Scientific.

    Google Scholar 

  • Braun, D., Richter, S., Hellmann, G. P., & Rätzsch, M. (1998). Peroxy-initiated chain degradation, crosslinking, and grafting in PP–PE Blends. Journal of Applied Polymer Science, 68, 2019–2028. DOI: 10.1002/(SICI)1097-4628(19980620)68:12< 2019::AID-APP16>; 3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Búcsi, A., & Szöcs, F. (2000). Kinetics of radical generation in PVC with dibenzoyl peroxide utilizing high-pressure technique. Macromolecular Chemistry & Physics, 201, 435–438. DOI: 10.1002/(SICI)1521-3935(20000201)201:4< 435::AID-MACP435>; 3.0.CO;2-C.

    Article  Google Scholar 

  • Chapman, A. V., & Porter, M. (1988). Sulphur vulcanization chemistry. In A. D. Roberts (Ed.), Natural rubber science & technology. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Chapman, A. V., & Johnson, T. (2005). The role of zinc in the vulcanization of styrene-butadiene rubbers. Kautschuk Gummi Kunststoffe, 58, 358–361.

    CAS  Google Scholar 

  • Che, J. T., Toki, S., Valentin, J. L., Brasero, J., Nimpaiboon, A., Rong, L. X., & Hsiao, B. S. (2012). Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules, 45, 6491–6503. DOI: 10.1021/ma3006894.

    Article  CAS  Google Scholar 

  • Choi, W. (2006). Mechanism of accelerated sulfur vulcanization. Nippon Gomu Kyokaishi, 79, 480–486. DOI: 10.2324/gomu. 79.480.

    Article  CAS  Google Scholar 

  • Choi, S. S., & Kim, E. (2015). A novel system for measurement of types and densities of sulfur crosslinks of a filled rubber vulcanizate. Polymer Testing, 42, 62–68. DOI: 10.1016/j.polymertesting.2014.12.007.

    Article  CAS  Google Scholar 

  • Coleman, M. M., Shelton, J. R., & Koenig, J. L. (1974). Sulfur vulcanization of hydrocarbon diene elastomers. Industrial & Engineering Chemistry, Product Research & Development, 13, 154–166.

    Article  CAS  Google Scholar 

  • Coran A.Y. (1978). Vulcanization of rubber. In F. R. Eirich (Ed.), Science & technology of rubber. New York, NY, USA: Academic Press.

    Google Scholar 

  • Coran, A. Y. (1989). Encyclopedia of polymer science & engineering (2nd Ed.). New York, USA: John Wiley and Sons.

    Google Scholar 

  • Coran, A. Y. (1994). Vulcanization. In J. E. Mark, B. Erman, & F. R. Eirich (Eds.), Science & technology of rubber. San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Coran, A. Y. (2003). Chemistry of the vulcanization and protection of elastomers: A review of the achievements. Journal of Applied Polymer Science, 87, 24–30. DOI: 10.1002/app.11659.

    Article  CAS  Google Scholar 

  • Costin, R. (2004). Selection of coagents for use in peroxide cured elastomers. Application Bulletin 5519. Exton, PA, USA: Sartomer Company.

    Google Scholar 

  • Cowie, J. M. G. (1998). Polymers: chemistry & physics of modern materials (2nd Ed.). Cheltenham, UK: Stanley Thornes.

    Google Scholar 

  • De Risi, F. R., & Noordermeer, J. W. M. (2007). Effect of methacrylate co-agents on peroxide cured PP/EPDM thermoplastic vulcanizates. Rubber Chemistry & Technology, 80, 83–99. DOI: 10.5254/1.3548170.

    Article  CAS  Google Scholar 

  • Dijkhuis, K. A. J., Noordermeer, J. W. M., & Dierkes, W. K. (2009). The relationship between crosslink system, network structure & material properties of carbon black reinforced EPDM. European Polymer Journal, 45, 3302–3312. DOI: 10.1016/j.eurpolymj.2009.06.029.

    Article  CAS  Google Scholar 

  • Dikland, H. G., & Hulskotte, R. J. M. (1993a). The mechanism of EPDM peroxide vulcanizations in the presence of triallyl-cyanurate as a coagent. Kautschuk Gummi Kunststoffe, 46, 608–613.

    CAS  Google Scholar 

  • Dikland, H. G., Ruardy, T., Van der Does, L., & Bantjes, A. (1993b). New coagents in peroxide vulcanization of EPM. Rubber Chemistry & Technology, 66, 693–711. DOI: 10.5254/1.3538338.

    Article  CAS  Google Scholar 

  • Dikland, H. G., & van Duin, M. (2002). Crosslinking of EPDM and polydiene rubbers studied by optical spectroscopy, In V. M. Litvinov, & P. P. De (Eds.), Spectroscopy of rubbers and rubbery materials. Shrewsbury, UK: Rapra Technology Lt

    Google Scholar 

  • Dluzneski, P. R. (2001). Peroxide vulcanization of elastomers. Rubber Chemistry & Technology, 74, 451–492. DOI: 10.5254/ 1.3547647.

    Article  CAS  Google Scholar 

  • Dondi, D., Buttafava, A., Zeffiro, A., Palamini, C., Lostritto, A., Giannini, L., & Faucitano, A. (2015). The mechanisms of the sulphur-only and catalytic vulcanization of polybutadiene: An EPR and DFT study. European Polymer Journal, 62, 222–235. DOI: 10.1016/j.eurpolymj.2014.11.012.

    Article  CAS  Google Scholar 

  • El-Nemr, K. F. (2011). Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates. Materials & Design, 32, 3361–3369. DOI: 10.1016/j.matdes.2011.02.010.

    Article  CAS  Google Scholar 

  • Flory, P. J. (1953). Principles of polymer chemistry. New York, NY, USA: Cornell University Press.

    Google Scholar 

  • Ghosh, P., Katare, S., Patkar, P., Caruthers, J. M., Venkatasubramanian, V., & Walker, K. A. (2003). Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber Chemistry & Technology, 76, 592–693. DOI: 10.5254/1.3547762.

    Article  CAS  Google Scholar 

  • González, L., Rodríguez, A., Valentín, J. L., Marcos-Fernández, A., & Posadas, P. (2005). Conventional and efficient crosslinking of natural rubber. Kautschuk Gummi Kunststoffe, 58, 638–643.

    Google Scholar 

  • González, L., Rodríguez, A., Marcos-Fernández, A., Valentín, J. L., & Fernández-Torres, A. (2007). Effect of network heterogeneities on the physical properties of nitrile rubbers cured with dicumyl peroxide. Journal of Applied Polymer Science, 103, 3377–3382. DOI: 10.1002/app.24696.

    Article  CAS  Google Scholar 

  • Gupta, S. D., Mukhopadhyay, R., Baranwal, K. C., & Bhownick, A. K. (2014). Reverse engineering of rubber products. Concepts, tools & techniques. Boca Raton, FL, USA: CRC press.

    Google Scholar 

  • Harman, M. W. (1937). U.S. Patent No. 2,100,692. Washington, DC, USA: U.S. Patent and Trademark Office.

    Google Scholar 

  • Heideman, G. (2004). Reduced zinc oxide levels in sulphur vulcanization of rubber compounds. Ph.D. thesis, University of Twente, Enschede, The Netherland.

    Google Scholar 

  • Heideman, G., Noordermeer, J. W. M., Datta, R. N., & Van Baarle, B. (2005). Effect of zinc complexes as activator for sulfur vulcanization in various rubbers. Rubber Chemistry & Technology, 78, 245–257. DOI: 10.5254/1.3547881.

    Article  CAS  Google Scholar 

  • Heideman, G., Datta, R. N., Noordermeer, J. W. M., & Van Baarle, B. (2006). Multifunctional additives as zinc-free curatives for sulfur vulcanization. Rubber Chemistry & Technology, 79, 561–588. DOI: 10.5254/1.3547952.

    Article  CAS  Google Scholar 

  • Henning, S. K., & Costin, R. (2006). Fundamentals of curing elastomers with peroxides and coagents. Rubber World, 233, 28–35.

    CAS  Google Scholar 

  • Henning, S.K. (2007). The use of coagents in the radical cure of elastomers. In Proceedings of the 56th International Wire and Cable Symposium, November 11–14, 2007 (pp. 537–593). Lake Buena Vista, FL, USA.

    Google Scholar 

  • Hernández, M., Carretero-González, J., Verdejo, R., Ezquerra, T. A., & López-Manchado, M. A. (2010). Molecular dynamics of natural rubber/layered silicate nanocomposites as studied by dielectric relaxation spectroscopy. Macromolecules, 43, 643–651. DOI: 10.1021/ma902379t.

    Article  CAS  Google Scholar 

  • Hernández, M., López-Manchado, M. A., Sanz, A., Nogales, A., & Ezquerra, T. A. (2011). Effects of strain-induced crystallization on the segmental dynamics of vulcanized natural rubber. Macromolecules, 44, 6574–6580. DOI: 10.1021/ ma201021q.

    Article  CAS  Google Scholar 

  • Hernández, M., Ezquerra, T. A., Verdejo, R., & López-Manchado, M. A. (2012). Role of vulcanizing additives on the segmental dynamics of natural rubber. Macromolecules, 45, 1070–1075. DOI: 10.1021/ma202325k.

    Article  CAS  Google Scholar 

  • Hernández, M., Valentín, J. L., López-Manchado, M. A., & Ezquerra, T. A. (2015). Influence of the vulcanization system on the dynamics and structure of natural rubber: Comparative study by means of broadband dielectric spectroscopy and solid-state NMR spectroscopy. European Polymer Journal, 68, 90–103. DOI: 10.1016/j.eurpolymj.2015.04.021.

    Article  CAS  Google Scholar 

  • Hofmann, W. (1994). Rubber technology handbook. New York, NY, USA: Hanser Publishers.

    Google Scholar 

  • Ikeda, Y., Yasuda, Y., Hijikata, K., Tosaka, M., & Kohjiya, S. (2008). Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules, 41, 5876–5884. DOI: 10.1021/ma800144u.

    Article  CAS  Google Scholar 

  • Ikeda, Y. (2014). 4–Understanding network control by vulcanization for sulfur cross-linked natural rubber (NR). Chemistry, Manufacture & Applications of Natural Rubber, 2014, 119–134. DOI: 10.1533/9780857096913.1.119.

    Article  CAS  Google Scholar 

  • Koenig, J. L. (2000). Spectroscopic characterization of the molecular structure of elastomeric networks. Rubber Chemistry & Technology, 73, 385–404. DOI: 10.5254/1.3547598.

    Article  CAS  Google Scholar 

  • Kresja, M. R., & Koenig, J. L. (1993a). The nature of sulfur vulcanisation. In N. P. Cheremisinoff (Ed.), Elastomer technology handbook. New Jersey, NY, USA: CRC press.

    Google Scholar 

  • Kresja, M. R., & Koenig, J. L. (1993b). A review of sulfur crosslinking fundamentals for accelerated and unaccelerated vulcanization. Rubber Chemistry & Technology, 66, 376–410. DOI: 10.5254/1.3538317.

    Article  Google Scholar 

  • Kruželák, J., Hudec, I., & Dosoudil, R. (2012a). Influence of thermo-oxidative & ozone ageing on the properties of elastomeric magnetic composites. Polymer Degradation & Stability, 97, 921–928. DOI: 10.1016/j.polymdegradstab.2012.03. 025.

    Article  CAS  Google Scholar 

  • Kruželák, J., Hudec, I., & Dosoudil, R. (2012b). Elastomeric magnetic composites — physical properties & network structure. Polimery, 57, 25–32. DOI: 10.14314/polimery.2012. 025.

    Article  Google Scholar 

  • Kruželák, J., Sýkora, R., & Hudec, I. (2015). Influence of mixed sulfur/peroxide curing system and thermo-oxidative ageing on the properties of rubber magnetic composites. Journal of Polymer Research, 22, 636. DOI: 10.1007/s10965-014-0636-8.

    Article  CAS  Google Scholar 

  • Kyselá, G., Hudec, I., & Alexy, P. (2010). Manufacturing & processing of rubber (1st Ed). Bratislava, Slovakia: Slovak University of Technology Press.

    Google Scholar 

  • Lazár, M., Hrčková, L., Borsig, E., Marcinčin, A., Reichelt, N., & Rätzsch, M. (2000). Course of degradation & build-up reactions in isotactic polypropylene during peroxide decomposition. Journal of Applied Polymer Science, 78, 886–893. DOI: 10.1002/1097-4628(20001024)78:4< 886::AID-APP 230>; 3.0.CO;2-5.

    Article  Google Scholar 

  • Leroy, E., Souid, A., & Deterre, R. (2013). A continuous kinetic model of rubber vulcanization predicting induction and reversion. Polymer Testing, 32, 575–582. DOI: 10.1016/j.polymertesting.2013.01.003.

    Article  CAS  Google Scholar 

  • Li., Y. (2013). Effect of cross-link density on the tearing of gum natural rubber cured with dicumylperoxide (DCP). Ph.D. thesis, The University of Akron, Akron, OH, USA.

    Google Scholar 

  • Liau, W. B., & Cheng, K. C. (1998). Dynamic mechanical relaxation of lightly cross-linked natural rubber. Polymer, 39, 6007–6012. DOI: 10.1016/s0032-3861(98)00036-6.

    Article  CAS  Google Scholar 

  • Likozar, B., & Krajnc, M. (2008). Influence of morphology on the dynamic mechanical properties of hydrogenated acrylonitrile butadiene elastomer/coagent nanodispersions. Journal of Applied Polymer Science, 110, 183–195. DOI: 10.1002/app.28525.

    Article  CAS  Google Scholar 

  • Liu, L., Luo, Y., Jia, D., & Guo, B. (2004). Studies on NBR-ZDMA-OMMT nanocomposites prepared by reactive mixing intercalation method. International Polymer Processing, 19, 374–379. DOI: 10.3139/217.1851.

    Article  CAS  Google Scholar 

  • Lu, Y., Liu, L., Tian, M., Geng, H., & Zhang, L. (2005). Study on mechanical properties of elastomers reinforced by zinc dimethacrylate. European Polymer Journal, 41, 589–598. DOI: 10.1016/j.eurpolymj.2004.10.012.

    Article  CAS  Google Scholar 

  • Maciejewska, M., Krzywania-Kaliszewska, A., & Zaborski, M. (2011). Hydrotalcite/unsaturated carboxylic acid systems as coagents in ethylene-propylene copolymer vulcanization. American Journal of Materials Science, 1, 81–88. DOI: 10.5923/j.materials.20110102.13.

    Article  Google Scholar 

  • Manaila, E., Craciun, G., Stelescu, M. D., Ighigeanu, D., & Ficai, M. (2014). Radiation vulcanization of natural rubber with polyfunctional monomers. Polymer Bulletin, 71, 57–82. DOI: 10.1007/s00289-013-1045-6.

    Article  CAS  Google Scholar 

  • Mansilla, M. A., Marzocca, A. J., Macchi, C., & Somoza, A. (2015). Influence of vulcanization temperature on the cure kinetics & on the microstructural properties in natural rubber/styrene-butadiene rubber blends prepared by solution mixing. European Polymer Journal, 69, 50–61. DOI: 10.1016/j.eurpolymj.2015.05.025.

    Article  CAS  Google Scholar 

  • Mark, H. F. (1988). Elastomers–past, present, and future. Rubber Chemistry & Technology, 61, 73–96.

    Article  Google Scholar 

  • Mark, J. E., Erman, B., & Eirich, F. R. (2005). Science & technology of rubber. London, UK: Elsevier.

    Google Scholar 

  • Milani, G., & Milani, F. (2014). Fast and reliable metadata model for the mechanistic analysis of NR vulcanized with sulphur. Polymer Testing, 33, 64–78. DOI: 10.1016/j. polymertesting.2013.11.003.

    Article  CAS  Google Scholar 

  • Milani, G., Leroy, E., Milani, F., & Deterre, R. (2013). Mechanistic modeling of reversion phenomenon in sulphur cured natural rubber vulcanization kinetics. Polymer Testing, 32, 1052–1063. DOI: 10.1016/j.polymertesting.2013.06.002.

    Article  CAS  Google Scholar 

  • Morrison, N. J., & Porter, M. (1984). Crosslinking of rubbers. In G. Allen (Ed.), The synthesis, characterization, reactions & applications of polymers. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Murgić, Z. H., Jelenčić, J., & Murgić, L. (1998). The mechanism of triallylcyanurate as a coagent in EPDM peroxide vulcanization. Polymer Engineering & Science, 38, 689–692. DOI: 10.1002/pen.10233.

    Article  Google Scholar 

  • Nie, Y., Huang, G., Qu, L., Zhang, P., Weng, G., & Wu, J. (2010). Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 115, 99–106. DOI: 10.1002/app.31045.

    Article  CAS  Google Scholar 

  • Nieuwenhuizen, P. J., Van Duin, M., Haasnoot, J. G., Reedijk, J., & McGill, W. J. (1999). The limiting value of ZDMC formation: New insight into the reaction of ZnO and TMTD. Journal of Applied Polymer Science, 73, 1247–1257. DOI: 10.1002/(SICI)1097-4628(19990815)73:7s< 1247::AID-APP19>; 3.0.CO;2-F.

    Article  CAS  Google Scholar 

  • Oenslager, G. (1933). Organic accelerators. Industrial & Engineering Chemistry, 25, 232–237.

    Article  CAS  Google Scholar 

  • Oh, S. J., & Koenig, J. L. (2000). Studies of peroxide curing of polybutadiene/zinc diacrylate blends by fast FT-IR imaging. Rubber Chemistry & Technology, 73, 74–79. DOI: 10.5254/1.3547581.

    Article  CAS  Google Scholar 

  • Ohm, R. F. (1997). Rubber chemicals. In J. I. Kroschwitz, & M. Howe-Grant (Eds.), Kirk-Othmer encyclopedia of chemical technology. New York, NY, USA: John Wiley & Sons.

    Google Scholar 

  • Orza, R. A. (2008). Investigation of peroxide crosslinking of EPDM rubber by solid-state NMR. Ph.D. thesis, Eidhoven University of Technology, Eindhoven, The Netherlands.

    Google Scholar 

  • Orza, R. A., Magusin, P. C. M. M., Litvinov, V. M., Van Duin, M., & Michels, M. A. J. (2009). Mechanism for peroxide cross-Linking of EPDM rubber from MAS 13C NMR spectroscopy. Macromolecules, 42, 8914–8924. DOI: 10.1021/ma9016482.

    Article  CAS  Google Scholar 

  • Ostromislensky, I. I. (1915). A process for making butadiene by condensing ethanol with acetaldehyde over an oxide catalyst at 360 to 440°C. Journal of Russian Physical and Chemical Society, 47, 1885.

    Google Scholar 

  • Peng, Z., Liang, X., Zhang, Y., & Zhang, Y. (2002). Reinforcement of EPDM by in situ prepared zinc dimethacrylate. Journal of Applied Polymer Science, 84, 1339–1345. DOI: 10.1002/app.10112.

    Article  CAS  Google Scholar 

  • Pierre, C. C., & Datta R. N. (2004). Spectroscopic studies on reaction between squalene and vulcanizing agents in the presence & absence of zinc-2-mercaptopyridine-N-oxide. Rubber Chemistry & Technology, 77, 201–213. DOI: 10.5254/1.3547817.

    Article  CAS  Google Scholar 

  • Polacco, G., & Filippi, S. (2014). Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts. Construction & Building Materials, 58, 94–100. DOI: 10.1016/j.conbuildmat.2014.02.018.

    Article  Google Scholar 

  • Przybyszewska, M., & Zaborski, M. (2009). New coagents in cross-linking of hydrogenated butadiene–acrylonitrile elastomer based on nanostructured zinc oxide. Composite Interfaces, 16, 131–141. DOI: 10.1163/156855409x402920.

    Article  CAS  Google Scholar 

  • Quirk, R. P. (1988). Overview of curing & cross-linking of elastomers. Progress in Rubber & Plastics Technology, 4, 31–45.

    CAS  Google Scholar 

  • Rajan, R., Varghese, S., & George, K. E. (2013). Role of co-agents in peroxide vulcanization of natural rubber. Rubber Chemistry & Technology, 86, 488–502. DOI: 10.5254/rct.13. 87984.

    Article  CAS  Google Scholar 

  • Saville, B., & Watson, A. A. (1967). Structural characterization of sulfur-vulcanized rubber networks. Rubber Chemistry & Technology, 40, 100–148.

    Article  CAS  Google Scholar 

  • Shanmugam, K. V. S. (2012). Peroxide curable butyl rubber derivatives. Ph.D. thesis, Queen’s University, Kingston, Ontario, Canada.

    Google Scholar 

  • Tao, Z., Viriyabanthorn, N., Ghumman, B., Barry, C., & Mead, J. (2005). Heat resistant elastomers. Rubber Chemistry & Technology, 78, 489–515. DOI: 10.5254/1.3547893.

    Article  CAS  Google Scholar 

  • Thitithammawong, A., Nakason, C., Sahakaro, K., & Noordermeer, J. W. M. (2007). Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastics vulcanizates based on natural rubber/polypropylene blends. Polymer Testing, 26, 537–546. DOI: 10.1016/j.polymertesting.2007.02.002.

    Article  CAS  Google Scholar 

  • Thitithammawong, A., Nakason, C., Sahakaro, K., & Noorder-meer, J. W. M. (2009). Multifunctional peroxide as alternative crosslink agents for dynamically vulcanized epoxidized natural rubber/polypropylene blends. Journal of Applied Polymer Science, 111, 819–825. DOI: 10.1002/app.29129.

    CAS  Google Scholar 

  • Thitithammawong, A., Uthaipan, N., & Rungvichaniwat, A. (2012). The effect of the ratios of sulfur to peroxide in mixed vulcanization systems on the properties of dynamic vulcanized natural rubber & polypropylene blends. Songklanakarin Journal of Science and Technology, 34, 653–662.

    CAS  Google Scholar 

  • Valentín, J. L., Rodríguez, A., Marcos-Fernández, A., & Gonzáles, L. (2005). Dicumyl peroxide cross-linking of nitrile rubbers with different content in acrylonitrile. Journal of Applied Polymer Science, 96, 1–5. DOI: 10.1002/app.20615.

    Article  CAS  Google Scholar 

  • Valentín, J. L., Fernández-Torres, A., Posadas, P., Marcos-Fernández, A., Rodríguez, A., & González, L. (2007). Measurements of freezing-point depression to evaluate rubber network structure. Crosslinking of natural rubber with dicumyl peroxide. Journal of Polymer Science. Part B: Polymer Physics, 45, 544–556. DOI: 10.1002/polb.21060.

    Article  CAS  Google Scholar 

  • Valentín, J. L., Carretero-González, J., Mora-Barrantes, I., Chassé, W., & Saalwächter, K. (2008). Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules, 41, 4717–4729. DOI: 10.1021/ma8005087.

    Article  CAS  Google Scholar 

  • Van Duin, M. (2002). Chemistry of EPDM cross-linking. Kautschuk Gummi Kunststoffe, 55, 150–156.

    Google Scholar 

  • Van Duin, M., Peters, R., Orza, R., & Chechik, V. (2009). Mechanism of peroxide cross-linking of EPDM rubber. Kautschuk Gummi Kunststoffe, 62, 458–462.

    Google Scholar 

  • Van Duin, M., Orza, R., Peters, R., & Chechik, V. (2010). Mechanism of peroxide cross-linking of EPDM Rubber. Macromolecular Symposia, 291–292, 66–74. DOI: 10.1002/masy. 201050508.

    Article  CAS  Google Scholar 

  • Vieira, E. R., Mantovani, J. D., & de Camargo Forte, M. M. (2015). Comparison between peroxide/coagent cross-linking systems and sulfur for producing tire treads from elastomeric compounds. Journal of Elastomers and Plastics, 47, 347–359. DOI: 10.1177/0095244313514988.

    Article  CAS  Google Scholar 

  • Visakh, P.M., Thomas, S., Chandra, A. K., & Mathew, A. P. (2013). Advances in elastomers I: blends & interpenetrating networks. Berlin, Germany: Springer.

    Google Scholar 

  • Waddell, W. H., Benzing, K. A., Evans, L. R., Mowdood, S. K., Weil, D. A., McMahon, J. M., Cody, R. H., Jr., & Kinsinger, J. A. (1991). Laser mass spectral investigations of rubber compound surface species. Rubber Chemistry & Technology, 64, 622–634.

    Article  CAS  Google Scholar 

  • White, J. R., & De, S. K. (2001). Rubber technologist’s handbook. Shrewsbury, UK: Rapra Technology Ltd.

    Google Scholar 

  • Yu, T., & Guo, M. (1990). Recent developments in 13C solid state high-resolution NMR of polymers. Progress in Polymer Science, 15, 825–908. DOI: 10.1016/0079-6700(90)90024-u.

    Article  CAS  Google Scholar 

  • Yu, J. H., Duan, J. K., Peng, W. Y., Wang, L. C., Peng, P., & Jiang, P. K. (2011). Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system. Express Polymer Letters, 5, 132–141. DOI: 10.3144/expresspolymlett.2011.14.

    Article  CAS  Google Scholar 

  • Zhang, P., Zhao, F., Yuan, Y., Shi, X., & Zhao, S. (2010). Network evolution based on general-purpose diene rub-bers/sulfur/TBBS system during vulcanization (I). Polymer, 51, 257–263. DOI: 10.1016/j.polymer.2009.10.057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Kruželák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruželák, J., Sýkora, R. & Hudec, I. Sulphur and peroxide vulcanisation of rubber compounds — overview. Chem. Pap. 70, 1533–1555 (2016). https://doi.org/10.1515/chempap-2016-0093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0093

Keywords

Navigation