Skip to main content

Advertisement

Log in

Enhancing lithium—sulphur battery performance by copper oxide@graphene oxide nanocomposite-modified cathode

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nanosheet structures of copper oxide@graphene oxide (CuO@GO) composite were developed as a host material to embed sulphur nanoparticles for use as cathodes in lithium–sulphur (Li–S) batteries. The homogeneous immobilisation of sulphur in the conductive matrix of CuO@GO within a strong chemical bond between carbon and polysulphide intermediates through the Lewis acid function of CuO provides a high specific discharge capacity of the CuO@GO/S electrode in comparison with the GO/S nanocomposite. The CuO@GO/S cathode delivers a discharge capacity of 1048.95 mA h g-1, 841.74 mA h g-1, 736.49 mA h g-1, 695.17 mA h g-1, 643.86 mA h g-1, and 457.08 mA h g-1 at different current rates of 0.1 C, 0.4 C, 0.7 C, 0.8 C, 1 C, and 2 C, respectively. The application of CuO@GO/S maintains the average coulombic efficiency of 96 % after 300 cycles at 1 C rate with a capacity retention of approximately 55.8 %. The rapid ion transportation within the efficient physicochemical confinement of polysulphides confirmed the role of the CuO@GO/S nanocomposite as a promising cathode material for the next generation of high-energy density Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barchasz, C., Lepretre, J. C., Alloin, F., & Patoux, S. (2012). New insights into the limiting parameters of the Li/S rechargeable cell. Journal of Power Sources, 199, 322–330. DOI: 10.1016/j.jpowsour.2011.07.021.

    Article  CAS  Google Scholar 

  • Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomate-rials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47, 2930–2946. DOI: 10.1002/anie. 200702505.

    Article  CAS  Google Scholar 

  • Chen, S. R., Zhai, Y. P., Xu, G. L., Jiang, X. Y., Zhao, D. Y., Li, J. T., Huang, L., & Sun, S. G. (2011). Ordered meso-porous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta, 56, 9549–9555. DOI: 10.1016/j.electacta.2011.03.005.

    Article  CAS  Google Scholar 

  • Dong, K., Wang, S. P., Zhang, H. Y., & Wu, J. P. (2013). Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries. Materials Research Bulletin, 48, 2079–2083. DOI: 10.1016/j.materresbull. 2013.02.031.

    Article  CAS  Google Scholar 

  • Ghasemi, S., Mousavi, M. F., Shamsipur, M., & Karami, H. (2008). Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrasonics Sonochemistry, 15, 448–455. DOI: 10.1016/j.ultsonch.2007.05.006.

    Article  CAS  Google Scholar 

  • Guo, J. C., Xu, Y. H., & Wang, C. S. (2011). Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Letters, 11, 4288–4294. DOI: 10.1021/nl2022 97p.

    Article  CAS  Google Scholar 

  • Helen, M., Reddy, M. A., Diemant, T., Schindeler, U. G., Behm, R. J., Kaiser, U., & Fichtner, M. (2015). Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Scientific Reports, 5, 12146. DOI: 10.1038/srep12146.

    Article  CAS  Google Scholar 

  • Hu, J., Dong, Y. L., Chen, X. J., Zhang, H. J., Zheng, J. M., Wang, Q., & Chen, X. G. (2014). A highly efficient catalyst: In situ growth of Au nanoparticles on graphene oxide–Fe3O4 nanocomposite support. Chemical Engineering Journal, 236, 1–8. DOI: 10.1016/j.cej.2013.09.080.

    Article  CAS  Google Scholar 

  • Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., & Archer, L. A. (2011). Porous hollow carbon@sulfur composites for high power lithium–sulfur batteries. Angewandte Chemie International Edition, 50, 5904–5908. DOI: 10.1002/anie. 201100637.

    Article  CAS  Google Scholar 

  • Ji, X. L., & Nazar, L. F. (2010). Advances in Li–S batteries. Journal of Materials Chemistry, 20, 9821–9826. DOI: 10.1039/b925751a.

    Article  CAS  Google Scholar 

  • Ji, L. W., Rao, M. M., Zheng, H. M., Zhang, L. A., Li, Y. C., Duan, W. H., Guo, J. H., Cairns, E. J., & Zhang, Y. G. (2011). Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 133, 18522–18525. DOI: 10.1021/ja206955k.

    Article  CAS  Google Scholar 

  • Jung, D. S., Hwang, T. H., Lee, J. H., Koo, H. Y., Shakoor, R. A., Kahraman, R., Jo, Y. N., Park, M. S., & Choi, J. W. (2014). Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Letters, 14, 4418–4425. DOI: 10.1021/nl501383g.

    Article  CAS  Google Scholar 

  • Lee, H. Y., Jung, Y. J., & Kim, S. O. (2016). Conducting polymer coated graphene oxide electrode for rechargeable lithium-sulfur batteries. Journal of Nanoscience and Nanotechnology, 16, 2692–2695. DOI: 10.1166/jnn.2016.11061.

    Article  CAS  Google Scholar 

  • Manthiram, A., Fu, Y. Z., Chung, S. H., Zu, C. X., & Su, Y. S. (2014). Rechargeable lithium–sulfur batteries. Chemical Reviews, 114, 11751–11787. DOI: 10.1021/cr500062v.

    Article  CAS  Google Scholar 

  • Patel, M. U. M., Luong, N. D., Seppl, J., Tchernychova, E., & Dominko, R. (2014). Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries. Journal of Power Sources, 254, 55–61. DOI: 10.1016/j. jpowsour.2013.12.081.

    Article  CAS  Google Scholar 

  • Rong, J. P., Ge, M. Y., Fang, X., & Zhou, C. W. (2014). Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium–sulfur (Li–S) batteries. Nano Letters, 14, 473–479. DOI: 10.1021/nl403404v.

    Article  CAS  Google Scholar 

  • Scheers, J., Fantini, S., & Johansson, P. (2014). A review of electrolytes for lithium–sulphur batteries. Journal of Power Sources, 255, 204–218. DOI: 10.1016/j.jpowsour.2014.01.023.

    Article  CAS  Google Scholar 

  • She, Z. W., Li, W. Y., Cha, J. J., Zheng, G. Y., Yang, Y., McDowell, M. T., Hsu, P. C., & Cui, Y. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 4, 1331–1337. DOI: 10.1038/ncomms2327.

    Article  Google Scholar 

  • Song, M. K., Cairns, E. J., & Zhang, Y. G. (2013). Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 5, 2186–2204. DOI: 10.1039/ c2nr33044j.

    Article  CAS  Google Scholar 

  • Song, J. X., Xu, T., Gordin, M. L., Zhu, P. Y., Lv, D. P., Jiang, Y. B., Chen, Y. S., Duan, Y. H., & Wang, D. H. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Advanced Functional Materials, 24, 1243–1250. DOI: 10.1002/adfm.201302631.

    Article  CAS  Google Scholar 

  • Tao, X. Y., Wang, J. G., Ying, Z. G., Cai, Q. X., Zheng, G. Y., Gan, Y. P., Huang, H., Xia, Y., Liang, C., Zhang, W. K., & Cui, Y. (2014). Strong sulfur binding with conducting Magnéli-phase TinO2itn-1 nanomaterials for improving lithium–sulfur batteries. Nano Letters, 14, 5288–5294. DOI: 10.1021/nl502331f.

    Article  CAS  Google Scholar 

  • Wang, H. L., Yang, Y. A., Liang, Y. Y., Robinson, J. T., Li, Y. G., Jackson, A., Cui, Y., & Dai, H. J. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 11, 2644–2647. DOI: 10.1021/nl200658a.

    Article  CAS  Google Scholar 

  • Wang, B., Wen, Y. F., Ye, D. L., Yu, H., Sun, B., Wang, G. X., Hulicova-Jurcakova, D., & Wang, L. Z. (2014). Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium–sulfur batteries. Chemistry–A European Journal, 20, 5224–5230. DOI: 10.1002/chem.201400385.

    Article  CAS  Google Scholar 

  • Xin, S., Gu, L., Zhao, N. H., Yin, Y. X., Zhou, L. J., Guo, Y. G., & Wan, L. J. (2012). Smaller sulfur molecules promise better lithium–sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513. DOI: 10.1021/ja308170k.

    Article  CAS  Google Scholar 

  • Yeon, S. H., Jung, K. N., Yoon, S. K., Shin, K. H., Jin, C. S., & Kim, Y. C. (2013). Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. Journal of Applied Electrochemistry, 43, 245–252. DOI: 10.1007/s10800-012-0510-5.

    Article  CAS  Google Scholar 

  • Yin, Y. X., Xin, S., Guo, Y. G., & Wan, L. J. (2013). Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200. DOI: 10.1002/anie.201304762.

    Article  CAS  Google Scholar 

  • Zaccheria, F., Santoro, F., Psaro, R., & Ravasio, N. (2011). CuO/SiO2: a simple and efficient solid acid catalyst for epoxide ring opening. Green Chemistry, 13, 545–548. DOI: 10.1039/c0gc00719f.

    Article  CAS  Google Scholar 

  • Zhang, S. S. (2013). Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources, 231, 153–162. DOI: 10.1016/j.jpowsour.2012. 12.102.

    Article  CAS  Google Scholar 

  • Zhang, K., Li, J., Li, Q. A., Fang, J., Zhang, Z. A., Lai, Y. Q., & Tian, Y. J. (2013). Improvement on electrochemical performance by electrodeposition of polyaniline nanowires at the top end of sulfur electrode. Applied Surface Science, 285, 900–906. DOI: 10.1016/j.apsusc.2013.09.010.

    Article  CAS  Google Scholar 

  • Zhang, Z. A., Zhang, Z. Y., Wang, X. W., Li, J., & Lai, Y. Q. (2014). Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. Journal of Applied Electrochemistry, 44, 607–611. DOI: 10.1007/s10800-014-0660-8.

    Article  CAS  Google Scholar 

  • Zhao, M. Q., Liu, X. F., Zhang, Q. A., Tian, G. L., Huang, J. Q., Zhu, W. C., & Wei, F. (2012). Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano, 6, 10759–10769. DOI: 10.1021/nn304037d.

    Article  CAS  Google Scholar 

  • Zheng, G. Y., Zhang, Q. F., Cha, J. J., Yang, Y. A., Li, W. Y., Seh, Z. W., & Cui, Y. (2013). Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Letters, 13, 1265–1270. DOI: 10.1021/nl304795g.

    Article  CAS  Google Scholar 

  • Zhou, L., Lin, X. Q., Huang, T., & Yu, A. S. (2014). Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries. Journal of Material Chemistry A, 2, 5117–5123. DOI: 10.1039/c3ta15175a.

    Article  CAS  Google Scholar 

  • Zu, C. X., & Manthiram, A. (2013). Hydroxylated graphene–sulfur nanocomposites for high rate lithium–sulfur batteries. Advanced Energy Materials, 3, 1008–1012. DOI: 10.1002/aenm.201201080.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Sovizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyyedin, S.T., Sovizi, M.R. & Yaftian, M.R. Enhancing lithium—sulphur battery performance by copper oxide@graphene oxide nanocomposite-modified cathode. Chem. Pap. 70, 1590–1599 (2016). https://doi.org/10.1515/chempap-2016-0088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0088

Keywords

Navigation