Chemical Papers

, Volume 70, Issue 12, pp 1590–1599 | Cite as

Enhancing lithium—sulphur battery performance by copper oxide@graphene oxide nanocomposite-modified cathode

  • Seyyed Taher Seyyedin
  • Mohammad Reza SoviziEmail author
  • Mohammad Reza Yaftian
Original Paper


Nanosheet structures of copper oxide@graphene oxide (CuO@GO) composite were developed as a host material to embed sulphur nanoparticles for use as cathodes in lithium–sulphur (Li–S) batteries. The homogeneous immobilisation of sulphur in the conductive matrix of CuO@GO within a strong chemical bond between carbon and polysulphide intermediates through the Lewis acid function of CuO provides a high specific discharge capacity of the CuO@GO/S electrode in comparison with the GO/S nanocomposite. The CuO@GO/S cathode delivers a discharge capacity of 1048.95 mA h g-1, 841.74 mA h g-1, 736.49 mA h g-1, 695.17 mA h g-1, 643.86 mA h g-1, and 457.08 mA h g-1 at different current rates of 0.1 C, 0.4 C, 0.7 C, 0.8 C, 1 C, and 2 C, respectively. The application of CuO@GO/S maintains the average coulombic efficiency of 96 % after 300 cycles at 1 C rate with a capacity retention of approximately 55.8 %. The rapid ion transportation within the efficient physicochemical confinement of polysulphides confirmed the role of the CuO@GO/S nanocomposite as a promising cathode material for the next generation of high-energy density Li–S batteries.


lithium—sulphur battery nanocomposite sheet-like structures metal oxide sulphur cathode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barchasz, C., Lepretre, J. C., Alloin, F., & Patoux, S. (2012). New insights into the limiting parameters of the Li/S rechargeable cell. Journal of Power Sources, 199, 322–330. DOI: 10.1016/j.jpowsour.2011.07.021.CrossRefGoogle Scholar
  2. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomate-rials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47, 2930–2946. DOI: 10.1002/anie. 200702505.CrossRefGoogle Scholar
  3. Chen, S. R., Zhai, Y. P., Xu, G. L., Jiang, X. Y., Zhao, D. Y., Li, J. T., Huang, L., & Sun, S. G. (2011). Ordered meso-porous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochimica Acta, 56, 9549–9555. DOI: 10.1016/j.electacta.2011.03.005.CrossRefGoogle Scholar
  4. Dong, K., Wang, S. P., Zhang, H. Y., & Wu, J. P. (2013). Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries. Materials Research Bulletin, 48, 2079–2083. DOI: 10.1016/j.materresbull. 2013.02.031.CrossRefGoogle Scholar
  5. Ghasemi, S., Mousavi, M. F., Shamsipur, M., & Karami, H. (2008). Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrasonics Sonochemistry, 15, 448–455. DOI: 10.1016/j.ultsonch.2007.05.006.CrossRefGoogle Scholar
  6. Guo, J. C., Xu, Y. H., & Wang, C. S. (2011). Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Letters, 11, 4288–4294. DOI: 10.1021/nl2022 97p.CrossRefGoogle Scholar
  7. Helen, M., Reddy, M. A., Diemant, T., Schindeler, U. G., Behm, R. J., Kaiser, U., & Fichtner, M. (2015). Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Scientific Reports, 5, 12146. DOI: 10.1038/srep12146.CrossRefGoogle Scholar
  8. Hu, J., Dong, Y. L., Chen, X. J., Zhang, H. J., Zheng, J. M., Wang, Q., & Chen, X. G. (2014). A highly efficient catalyst: In situ growth of Au nanoparticles on graphene oxide–Fe3O4 nanocomposite support. Chemical Engineering Journal, 236, 1–8. DOI: 10.1016/j.cej.2013.09.080.CrossRefGoogle Scholar
  9. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., & Archer, L. A. (2011). Porous hollow carbon@sulfur composites for high power lithium–sulfur batteries. Angewandte Chemie International Edition, 50, 5904–5908. DOI: 10.1002/anie. 201100637.CrossRefGoogle Scholar
  10. Ji, X. L., & Nazar, L. F. (2010). Advances in Li–S batteries. Journal of Materials Chemistry, 20, 9821–9826. DOI: 10.1039/b925751a.CrossRefGoogle Scholar
  11. Ji, L. W., Rao, M. M., Zheng, H. M., Zhang, L. A., Li, Y. C., Duan, W. H., Guo, J. H., Cairns, E. J., & Zhang, Y. G. (2011). Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 133, 18522–18525. DOI: 10.1021/ja206955k.CrossRefGoogle Scholar
  12. Jung, D. S., Hwang, T. H., Lee, J. H., Koo, H. Y., Shakoor, R. A., Kahraman, R., Jo, Y. N., Park, M. S., & Choi, J. W. (2014). Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Letters, 14, 4418–4425. DOI: 10.1021/nl501383g.CrossRefGoogle Scholar
  13. Lee, H. Y., Jung, Y. J., & Kim, S. O. (2016). Conducting polymer coated graphene oxide electrode for rechargeable lithium-sulfur batteries. Journal of Nanoscience and Nanotechnology, 16, 2692–2695. DOI: 10.1166/jnn.2016.11061.CrossRefGoogle Scholar
  14. Manthiram, A., Fu, Y. Z., Chung, S. H., Zu, C. X., & Su, Y. S. (2014). Rechargeable lithium–sulfur batteries. Chemical Reviews, 114, 11751–11787. DOI: 10.1021/cr500062v.CrossRefGoogle Scholar
  15. Patel, M. U. M., Luong, N. D., Seppl, J., Tchernychova, E., & Dominko, R. (2014). Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries. Journal of Power Sources, 254, 55–61. DOI: 10.1016/j. jpowsour.2013.12.081.CrossRefGoogle Scholar
  16. Rong, J. P., Ge, M. Y., Fang, X., & Zhou, C. W. (2014). Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium–sulfur (Li–S) batteries. Nano Letters, 14, 473–479. DOI: 10.1021/nl403404v.CrossRefGoogle Scholar
  17. Scheers, J., Fantini, S., & Johansson, P. (2014). A review of electrolytes for lithium–sulphur batteries. Journal of Power Sources, 255, 204–218. DOI: 10.1016/j.jpowsour.2014.01.023.CrossRefGoogle Scholar
  18. She, Z. W., Li, W. Y., Cha, J. J., Zheng, G. Y., Yang, Y., McDowell, M. T., Hsu, P. C., & Cui, Y. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 4, 1331–1337. DOI: 10.1038/ncomms2327.CrossRefGoogle Scholar
  19. Song, M. K., Cairns, E. J., & Zhang, Y. G. (2013). Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 5, 2186–2204. DOI: 10.1039/ c2nr33044j.CrossRefGoogle Scholar
  20. Song, J. X., Xu, T., Gordin, M. L., Zhu, P. Y., Lv, D. P., Jiang, Y. B., Chen, Y. S., Duan, Y. H., & Wang, D. H. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Advanced Functional Materials, 24, 1243–1250. DOI: 10.1002/adfm.201302631.CrossRefGoogle Scholar
  21. Tao, X. Y., Wang, J. G., Ying, Z. G., Cai, Q. X., Zheng, G. Y., Gan, Y. P., Huang, H., Xia, Y., Liang, C., Zhang, W. K., & Cui, Y. (2014). Strong sulfur binding with conducting Magnéli-phase TinO2itn-1 nanomaterials for improving lithium–sulfur batteries. Nano Letters, 14, 5288–5294. DOI: 10.1021/nl502331f.CrossRefGoogle Scholar
  22. Wang, H. L., Yang, Y. A., Liang, Y. Y., Robinson, J. T., Li, Y. G., Jackson, A., Cui, Y., & Dai, H. J. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 11, 2644–2647. DOI: 10.1021/nl200658a.CrossRefGoogle Scholar
  23. Wang, B., Wen, Y. F., Ye, D. L., Yu, H., Sun, B., Wang, G. X., Hulicova-Jurcakova, D., & Wang, L. Z. (2014). Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium–sulfur batteries. Chemistry–A European Journal, 20, 5224–5230. DOI: 10.1002/chem.201400385.CrossRefGoogle Scholar
  24. Xin, S., Gu, L., Zhao, N. H., Yin, Y. X., Zhou, L. J., Guo, Y. G., & Wan, L. J. (2012). Smaller sulfur molecules promise better lithium–sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513. DOI: 10.1021/ja308170k.CrossRefGoogle Scholar
  25. Yeon, S. H., Jung, K. N., Yoon, S. K., Shin, K. H., Jin, C. S., & Kim, Y. C. (2013). Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. Journal of Applied Electrochemistry, 43, 245–252. DOI: 10.1007/s10800-012-0510-5.CrossRefGoogle Scholar
  26. Yin, Y. X., Xin, S., Guo, Y. G., & Wan, L. J. (2013). Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200. DOI: 10.1002/anie.201304762.CrossRefGoogle Scholar
  27. Zaccheria, F., Santoro, F., Psaro, R., & Ravasio, N. (2011). CuO/SiO2: a simple and efficient solid acid catalyst for epoxide ring opening. Green Chemistry, 13, 545–548. DOI: 10.1039/c0gc00719f.CrossRefGoogle Scholar
  28. Zhang, S. S. (2013). Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources, 231, 153–162. DOI: 10.1016/j.jpowsour.2012. 12.102.CrossRefGoogle Scholar
  29. Zhang, K., Li, J., Li, Q. A., Fang, J., Zhang, Z. A., Lai, Y. Q., & Tian, Y. J. (2013). Improvement on electrochemical performance by electrodeposition of polyaniline nanowires at the top end of sulfur electrode. Applied Surface Science, 285, 900–906. DOI: 10.1016/j.apsusc.2013.09.010.CrossRefGoogle Scholar
  30. Zhang, Z. A., Zhang, Z. Y., Wang, X. W., Li, J., & Lai, Y. Q. (2014). Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. Journal of Applied Electrochemistry, 44, 607–611. DOI: 10.1007/s10800-014-0660-8.CrossRefGoogle Scholar
  31. Zhao, M. Q., Liu, X. F., Zhang, Q. A., Tian, G. L., Huang, J. Q., Zhu, W. C., & Wei, F. (2012). Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano, 6, 10759–10769. DOI: 10.1021/nn304037d.CrossRefGoogle Scholar
  32. Zheng, G. Y., Zhang, Q. F., Cha, J. J., Yang, Y. A., Li, W. Y., Seh, Z. W., & Cui, Y. (2013). Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Letters, 13, 1265–1270. DOI: 10.1021/nl304795g.CrossRefGoogle Scholar
  33. Zhou, L., Lin, X. Q., Huang, T., & Yu, A. S. (2014). Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries. Journal of Material Chemistry A, 2, 5117–5123. DOI: 10.1039/c3ta15175a.CrossRefGoogle Scholar
  34. Zu, C. X., & Manthiram, A. (2013). Hydroxylated graphene–sulfur nanocomposites for high rate lithium–sulfur batteries. Advanced Energy Materials, 3, 1008–1012. DOI: 10.1002/aenm.201201080.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Seyyed Taher Seyyedin
    • 1
  • Mohammad Reza Sovizi
    • 2
    Email author
  • Mohammad Reza Yaftian
    • 1
  1. 1.Phase Equilibria Research Laboratory, Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran
  2. 2.Faculty of Chemistry and Chemical EngineeringMalek-Ashtar University of TechnologyTehranIran

Personalised recommendations