Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry

Abstract

Surfactant-stable keratinases with good properties are promising candidates for extensive applications in detergent industries. A novel fungal keratinase-producing strain, Gibberella intermedia CA3-1, is described in this study. The keratinase production medium was optimized and composed of 10 g L−1 of wool powder, 5 g L−1 of tryptone, 10 g L−1 of maltodextrin and 0.5 g L−1 of NaCl. Keratinase activity was increased up to 109 U mL−1 from 15 U mL−1 by culture optimization. The optimal reaction pH and temperature of the enzyme were 9.0 and 60°C, respectively. The keratinase activity could be improved by sodium dodecyl sulphate (SDS), and it remained stable in the presence of several surfactants and commercial detergents. G. intermedia keratinase was proved to completely remove blood stains from cotton cloth when combined with detergents. These findings indicate that this fungal keratinase is a promising catalyst for the application in detergent industry. To our knowledge, this is the first report on keratinase production by Gibberella genus.

This is a preview of subscription content, access via your institution.

References

  1. Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmi priya, T., & Annadurai, G. (2005).. Enzyme and Microbial Technology, 36, 639–647. DOI: 10.1016/j.enzmictec.2004.07.019.

    CAS  Article  Google Scholar 

  2. Anitha, T. S., & Palanivelu, P. (2013). Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expression and Purification, 88, 214–220. DOI: 10.1016/j.pep.2013.01. 007.

    CAS  Article  Google Scholar 

  3. Anstrup, K., & Anderson, O. (1974). U.S. Patent No. 3,827,933. Washington, D.C., USA: U.S. Patent and Trademark Office.

    Google Scholar 

  4. Arulmani, M., Aparanjini, K., Vasanthi, K., Arumugam, P., Arivuchelvi, M., & Kalaichelvan, P. T. (2006). Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World Journal of Microbiology and Biotechnology, 23, 475–481. DOI: 10.1007/s11274-006-9249-7.

    Article  Google Scholar 

  5. Beg, Q. K., Sahai, V., & Gupta, R. (2003). Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry, 39, 203–209. DOI: 10.1016/s0032-9592(03)00064-5.

    CAS  Article  Google Scholar 

  6. Bernal, C., Cairó, J., & Coello, N. (2006). Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme and Microbial Technology, 38, 49–54. DOI: 10.1016/j.enzmictec.2005.02.021.

    CAS  Article  Google Scholar 

  7. Brandelli, A., Daroit, D. J., & Riffel, A. (2010). Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology, 85, 1735–1750. DOI: 10.1007/s00253-009-2398-5.

    CAS  Article  Google Scholar 

  8. Brouta, F., Descamps, F., Fett, T., Losson, B., Gerday, C., & Mignon, B. (2001). Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Medical Mycology, 39, 269–275. DOI: 10.1080/mmy.39.3.269.275.

    CAS  Article  Google Scholar 

  9. Daroit, D. J., & Brandelli, A. (2014). A current assessment on the production of bacterial keratinases. Critical Reviews in Biotechnology, 34, 372–384. DOI: 10.3109/07388551.2013. 794768.

    CAS  Article  Google Scholar 

  10. Deng, A. H., Wu, J., Zhang, Y., Zhang, G. Q., & Wen, T. G. (2010). Purification and characterization of a surfactantstable high-alkaline protease from Bacillus sp. B001. Bioresource Technology, 101, 7100–7106. DOI: 10.1016/j.biortech. 2010.03.130.

    CAS  Article  Google Scholar 

  11. Fakhfakh-Zouari, N., Hmidet, N., Haddar, A., Kanoun, S., & Nasri, M. (2010). A novel serine metallokeratinase from a newly isolated Bacillus pumilus A1 grown on chicken feather meal: Biochemical and molecular characterization. Applied Biochemistry and Biotechnology, 162, 329–344. DOI: 10.1007/s12010-009-8774-x.

    CAS  Article  Google Scholar 

  12. Farag, A. M., & Hassan, M. A. (2004). Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology, 34, 85–93. DOI: 10.1016/j.enzmictec.2003.09.002.

    CAS  Article  Google Scholar 

  13. Gong, J. S., Wang, Y., Zhang, Zhang, R. X., Su, C., Li, H., Zhang, X. M., Xu, Z. H., & Shi, J. S. (2015). Biochemical characterization of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. RSC Advances, 5, 24691–24699. DOI: 10.1039/c4ra16423g.

    CAS  Article  Google Scholar 

  14. Gradišar, H., Kern, S., & Friedrich, J. (2000). Keratinase of Doratomyces microsporus. Applied Microbiology and Biotechnology, 53, 196–200. DOI: 10.1007/s002530050008.

    Article  Google Scholar 

  15. Gradišar, H., Friedrich, J., Krizaj, I., & Jerala, R. (2005). Similarities and specificities of fungal keratinolytic proteases: Comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Applied and Environmental Microbiology, 71, 3420–3426. DOI: 10.1128/aem.71.7.3420-3426.2005.

    Article  Google Scholar 

  16. Gupta, R., & Ramnani, P. (2006). Microbial keratinases and their prospective applications: An overview. Applied Microbiology and Biotechnology, 70, 21–33. DOI: 10.1007/s00253- 005-0239-8.

    CAS  Article  Google Scholar 

  17. Gupta, R., Sharma, R., & Beg, Q. K. (2013). Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 33, 216–228. DOI: 10.3109/07388551.2012.685051.

    CAS  Article  Google Scholar 

  18. Ismail, A. M. S., Housseiny, M. M., Abo-Elmagd, H. I., El- Sayed, N. H., & Habib, M. (2012). Novel keratinase from Trichoderma harzianum MH-20 exhibiting remarkable dehairing capabilities. International Biodeterioration & Biodegradation, 70, 14–19. DOI: 10.1016/j.ibiod.2011.10.013.

    CAS  Article  Google Scholar 

  19. Itsune, O., Isao, M., Keizo, H., Naoya, I., Mayumi, H., & Hisami, M. (2002). Japan Patent No. 2,002,256,294. Tokyo, Japan: Japan Patent Office.

    Google Scholar 

  20. Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90, 1291–1305. DOI: 10.1016/j.biochi.2008.03.004.

    CAS  Article  Google Scholar 

  21. Liu, B. H., Zhang, J., Fang, Z., Gu, L., Liao, X. G., Du, G. C., & Chen, J. (2013). Enhanced thermostability of keratinase by computational design and empirical mutation. Journal of Industrial Microbiology & Biotechnology, 40, 697–704. DOI: 10.1007/s10295-013-1268-4.

    CAS  Article  Google Scholar 

  22. Moreira-Gasparin, F. G., de Souza, C. G. M., Costa, A. M., Alexandrino, A. M., Bracht, C. K., Boer, C. G., & Peralta, R. M. (2009). Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation, 20, 727–736. DOI: 10.1007/s10532- 009-9260-4.

    CAS  Article  Google Scholar 

  23. Paul, T., Das, A., Mandal, A., Halder, S. K., Das Mohpatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Biochemical and structural characterization of a detergent stable alkaline serine keratinase from Paenibacillus Woosongensis TKB2: A potential additive for laundry detergent. Waste and Biomass Valorization, 5, 563–574. DOI: 10.1007/s12649-013-9265-4.

    Article  Google Scholar 

  24. Paul, T., Das, A., Mandal, A., Halder, S. K., Jana, A., Maity, C., Das Mohpatra, P. K., Pati, B. R., & Mondal, K. C. (2014). An efficient cloth cleaning properties of a crude keratinase combined with detergent: Towards industrial viewpoint. Journal of Cleaner Production, 66, 672–684. DOI: 10.1016/j.jclepro.2013.10.054.

    CAS  Article  Google Scholar 

  25. Paul, T., Jana, A., Mandal, A. K., Mandal, A., Das Mohpatra, P. K., & Mondal, K. C. (2016). Bacterial keratinolytic protease, imminent starter for NextGen leather and detergent industries. Sustainable Chemistry and Pharmacy, 3, 8–22. DOI: 10.1016/j.scp.2016.01.001.

    Article  Google Scholar 

  26. Pillai, P., & Archana, G. (2008). Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Applied Microbiology and Biotechnology, 78, 643–650. DOI: 10.1007/s00253-008-1355- z.

    CAS  Article  Google Scholar 

  27. R¨ohm, O. (1913). German Patent No. 283,923. M¨unchen, Germany: German Patent and Trade Mark Office.

    Google Scholar 

  28. Rai, S. K., Konwarh, R., & Mukherjee, A. K. (2009). Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM- 01 in solid-state fermentation using chicken-feather as substrate. Biochemical Engineering Journal, 45, 218–225. DOI: 10.1016/j.bej.2009.04.001.

    CAS  Article  Google Scholar 

  29. Rajput, R., Sharma, R., & Gupta, R. (2010). Biochemical characterization of a thiol-activated, oxidation stable keratinase from Bacillus pumilus KS12. Enzyme Research, 2010, 132–148. DOI: 10.4061/2010/132148.

    Google Scholar 

  30. Ramesh, S., Rajesh, M., & Mathivanan, N. (2009). Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosystems Engineering, 32, 791–800. DOI: 10.1007/s00449- 009-0305-1.

    CAS  Article  Google Scholar 

  31. Riffel, A., & Brandelli, A. (2002). Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. Journal of Industrial Microbiology Biotechnology, 29, 255–258. DOI: 10.1038/sj.jim.7000307.

    CAS  Article  Google Scholar 

  32. Santos, R. M. D. B., Firmino, A. A. P., de Sá, C. M., & Felix, C. R. (1996). Keratinolytic activity of Aspergillus fumigatus Fresenius. Current Microbiology, 33, 364–370. DOI: 10.1007/s002849900129.

    CAS  Article  Google Scholar 

  33. Singh, S. K., Singh, S. K., Tripathi, V. R., & Garg, S. K. (2012). Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochemistry, 47, 1479–1487. DOI: 10.1016/j.procbio.2012.05.021.

    CAS  Article  Google Scholar 

  34. Subba Rao, C., Sathish, T., Ravichandra, P., & Prakasham, R. S. (2009). Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry, 44, 262–268. DOI: 10.1016/j.procbio.2008.10.022.

    CAS  Article  Google Scholar 

  35. Tiwary, E., & Gupta, R. (2010). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 101, 6103–6110. DOI: 10.1016/j.biortech.2010. 02.090.

    CAS  Article  Google Scholar 

  36. Tork, S. E., Shahein, Y. E., El-Hakim, A. E., Abdel-Aty, A. M., & Aly, M. M. (2013). Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. International Journal of Biological Macromolecules, 55, 169–175. DOI: 10.1016/j.ijbiomac.2013.01.002.

    CAS  Article  Google Scholar 

  37. Wu, Y., Gong, J. S., Lu, Z. M., Li, H., Zhu, X. Y., Li, H., Shi, J. S., & Xu, Z. H. (2013). Isolation and characterization of Gibberella intermedia CA3-1, a novel and versatile nitrilaseproducing fungus. Journal of Basic Microbiology, 53, 934–941. DOI: 10.1002/jobm.201200143.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jin-Song Shi or Zheng-Hong Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, RX., Gong, JS., Dou, WF. et al. Production and characterization of surfactant-stable fungal keratinase from Gibberella intermedia CA3-1 with application potential in detergent industry. Chem. Pap. 70, 1460–1470 (2016). https://doi.org/10.1515/chempap-2016-0086

Download citation

Keywords

  • Gibberella intermedia
  • keratinase
  • detergents
  • surfactants
  • biocatalysis