Skip to main content

Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex

Abstract

Synthesis of new efficient compounds is becoming urgent due to the resistance of organisms to drugs. Salen derivatives have interesting therapeutic and industrial applications. A coumarin based derivative of salen, 7-hydroxy-8-((E)-((2-((E)-((7-hydroxy-5-methyl-2-oxo-3,8a-dihydro-2Hchromen-8-yl)methylene)amino)-4-methylphenyl)imino)methyl)-5-methyl-2H-chromen-2-one (L), and its copper complex, CuL, have been synthesized and characterized. Antibacterial and antioxidant activity of these compounds have been evaluated and electronic, optical and molecular properties have been calculated using density functional theory (DFT) with B3LYP. The results were correlated with the biological activity and reactivity of the compounds. Experimental and theoretical calculations indicate that the studied copper complex has the potential to function as a drug.

This is a preview of subscription content, access via your institution.

References

  1. Adhikary, C., Banerjee, S., Chakraborty, J., & Ianelli, S. (2013). Copper (II) azide complexes with NNO donor ligands: Syntheses, structure, catalysis and biological studies. Polyhedron, 65, 48–53. DOI: 10.1016/j.poly.2013.08.019.

    CAS  Article  Google Scholar 

  2. Armarego, W. F. L., & Perrin, D. D. (1980). Purification of laboratory chemicals. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  3. Attri, P., Bhatia, R., Gaur, J., Arora, B., Gupta, A., Kumar, N., & Choi, E. H. (2014). Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arabian Journal of Chemistry. DOI: 10.1016/j.arabjc.2014.05.007. (in press)

    Google Scholar 

  4. Bagihalli, G. B., Avaji, P. G., Patil, S. A., & Badami, P. S. (2008). Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. European Journal of Medicinal Chemistry, 43, 2639–2649. DOI: 10.1016/j.ejmech.2008.02.013.

    CAS  Article  Google Scholar 

  5. Baudry, M., Etienne, S., Bruce, A., Palucki, M., Jacobsen, E., & Malfroy, B. (1993). Salen-manganese complexes are superoxide dismutase-mimics. Biochemical and Biophysical Research Communications, 192, 964–968. DOI: 10.1006/bbrc.1993.1509.

    CAS  Article  Google Scholar 

  6. Bazzicalupi, C., Biagini, S., Bianchi, A., Faggi, E., Giorgi, C., Gratteri, P., Pina, F., & Valtancoli, B. (2012). Thermodynamic and fluorescence emission properties of the Zn(II), Cd(II) and Pb(II) complexes with a fluorescent chelator bearing phenanthroline and naphthalene subunits. Inorganica Chimica Acta, 381, 229–235. DOI: 10.1016/j.ica.2011.09.027.

    CAS  Article  Google Scholar 

  7. Belaid, S., Benali-Baďtich, O., Bouet, G., & Landreau, A. (2015). Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,N-O-phenylenebis(salicylideneimine). Chemical Papers, 69, 1350–1360. DOI: 10.1515/chempap-2015-0132.

    CAS  Article  Google Scholar 

  8. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. DOI: 10.1038/1811199a0.

    CAS  Article  Google Scholar 

  9. Boucher, L. J. (1974). Manganese Schiff’s base complexes—II. Synthesis and spectroscopy of chloro-complexes of some derivatives of (salicylaldehydeethylenediimato) manganese (III). Journal of Inorganic and Nuclear Chemistry, 36, 531–536. DOI: 10.1016/0022-1902(74)80108-9.

    CAS  Article  Google Scholar 

  10. Cozzi, P. G. (2004). Metal-Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews, 33, 410–421. DOI: 10.1039/b307853c.

    CAS  Article  Google Scholar 

  11. Datta, A. (2009). Synthesis and structural characterization of N-(2-pyridylmethyl)-3-methoxysalicylaldiminato copper(II) chloride. Journal of Chemical Crystallography, 39, 619–622. DOI: 10.1007/s10870-009-9515-2.

    CAS  Article  Google Scholar 

  12. Ding, W. Q., & Lind, S. E. (2009). Metal ionophores–an emerging class of anticancer drugs. IUBMB Life, 61, 1013–1018. DOI: 10.1002/iub.253.

    CAS  Article  Google Scholar 

  13. Dronskowski, R. (2005). Computational chemistry of solid state materials a guide for materials scientists, chemists, physicists and others. Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  14. Ejiah, F. N., Fasina, T. M., Familoni, O. B., & Ogunsola, F. T. (2013). Substituent effect on spectral and antimicrobial activity of Schiff bases derived from aminobenzoic acids. Advances in Biological Chemistry, 2013, 475–479. DOI: 10.4236/abc.2013.35051.

    Google Scholar 

  15. Ejidike, I. P., & Ajibade, P. A. (2015). Synthesis, characterization and biological studies of metal(II) complexes of (3E)-3-[(2-(E)-[1-(2,4-dihydroxyphenyl)ethylidene]aminoethyl) imino]-1-phenylbutan-1-one Schiff Base. Molecules, 20, 9788–9802. DOI: 10.3390/molecules20069788.

    CAS  Article  Google Scholar 

  16. El-Ayaan, U., El-Metwally, N. M., Youssef, M. M., & El Bialy, S. A. A. (2007). Perchlorate mixed-ligand copper(II) complexes of β-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 68, 1278–1286. DOI: 10.1016/j.saa.2007.02.011.

    Article  Google Scholar 

  17. Evans, D. H. (2008). One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions. Chemical Reviews, 108, 2113–2144. DOI: 10.1021/cr068066l.

    CAS  Article  Google Scholar 

  18. Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. DOI: 10.1016/s0010-8545(00)80009-0.

    CAS  Article  Google Scholar 

  19. Gopalakrishnan, S., & Joseph, J. (2009). Antifungal activities of copper(II) with biosensitive macrocyclic Schiff base ligands derived from 4-aminoantipyrine derivatives. Mycobiology, 37, 141–146. DOI: 10.4489/myco.2009.37.2.141.

    CAS  Article  Google Scholar 

  20. Gül¸cin, İ., Şat, İ. G., Beydemir, Ş, Elmastaş, M., & Küfreviolu, O. İ. (2004). Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87, 393–400. DOI: 10.1016/j.foodchem.2003.12.008.

    Article  Google Scholar 

  21. Gupta, K. C., & Sutar, A. K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252, 1420–1450. DOI: 10.1016/j.ccr.2007.09.005.

    CAS  Article  Google Scholar 

  22. Harinath, Y., Kumar Reddy, D. H., Kumar, B. N., Apparao, C., & Seshaiah, K. (2013). Synthesis, spectral characterization and antioxidant activity studies of a bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 101, 264–272. DOI: 10.1016/j.saa.2012.09.085.

    CAS  Article  Google Scholar 

  23. Kulkarni, A., Patil, S. A., & Badami, P. S. (2010). DNA cleavage and in vitro antimicrobial studies of Co (II), Ni (II), and Cu (II) complexes with ONNO donor Schiff bases: Synthesis, spectral characterization, and electrochemical studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 25, 87–96. DOI: 10.3109/14756360903017791.

    CAS  Article  Google Scholar 

  24. Kumar, S., & Gupta, R. (2011). Copper(II) complexes of 13-membered amide-based macrocyclic ligands: Effect of electronic substituents on redox properties. Indian Journal of Chemistry-Part A Inorganic Physical Theoretical and Analytical, 50, 1369–1379.

    Google Scholar 

  25. Leeson, P. (2012). Drug discovery: Chemical beauty contest. Nature, 481, 455–456. DOI: 10.1038/481455a.

    CAS  Article  Google Scholar 

  26. Liu, H., Wang, H., Gao, F., Niu, D., & Lu, Z. (2007). Selfassembly of copper(II) complexes with substituted aroylhydrazones and monodentate N-heterocycles: synthesis, structure and properties. Journal of Coordination Chemistry, 60, 2671–2678. DOI: 10.1080/00958970701302404.

    CAS  Article  Google Scholar 

  27. Lever, A. (1968). Inorganic electronic spectroscopy. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  28. Mahmoud, W. H., Mohamed, G. G., & El-Dessouky, M. M. (2014). Synthesis, characterization and in vitro biological activity of mixed transition metal complexes of lornoxicam with 1,10-phenanthroline. International Journal of Electrochemical Science, 9, 1415–1438.

    CAS  Google Scholar 

  29. Mebi, C. A. (2011). DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. Journal of Chemical Sciences, 123, 727–731. DOI: 10.1007/s12039-011-0131-2.

    CAS  Article  Google Scholar 

  30. Mobinikhaledi, A., Zendehdel, M., & Safari, P. (2014). Effect of substituents and encapsulation on the catalytic activity of copper(II) complexes of two tridentate Schiff base ligands based on thiophene: benzyl alcohol and phenol oxidation reactions. Transition Metal Chemistry, 39, 431–442. DOI: 10.1007/s11243-014-9817-x.

    CAS  Article  Google Scholar 

  31. Molinspiration (2015). Cheminformatics on the web. Retrieved March 24, 2016, from http://www.molinspiration.com

    Google Scholar 

  32. Nakamoto, K. (1970). Infrared spectra of inorganic and coordination compounds (2nd ed.). New York, NY, USA: Wiley-Interscience.

    Google Scholar 

  33. Natarajan, C., Tharmaraj, P., & Murugesan, R. (1992). In situ synthesis and spectroscopic studies of copper(II) and nickel(II) complexes of 1-hydroxy-2-naphthylstyrylketoneimines. Journal of Coordination Chemistry, 26, 205–213. DOI: 10.1080/00958979209409214.

    CAS  Article  Google Scholar 

  34. Prakash, A., Gangwar, M. P., & Singh, K. K. (2011). Synthesis, spectroscopy and biological studies of nickel(II) complexes with tetradentate Schiff bases having N2O2 donor group. International Journal of ChemTech Research, 3, 222–229.

    CAS  Google Scholar 

  35. Pui, A., Policar, C., & Mahy, J. P. (2007). Electronic and steric effects in cobalt Schiff bases complexes: Synthesis, characterization and catalytic activity of some cobalt(II) tetra-halogens-dimethyl salen complexes. Inorganica Chimica Acta, 360, 2139–2144. DOI: 10.1016/j.ica.2006.10.040. 1502

    CAS  Article  Google Scholar 

  36. Rekha, S., & Nagasundara, K. R. (2006). Complexes of the Schiff base derived from 4-amino-phenyl benzimidazole and 2,2-dehydropyrollidene-N-aldehyde with Zn(II),Cd(II) and Hg(II) halides. Indian Journal of Chemistry, 45, 2421–2425.

    Article  Google Scholar 

  37. Saadeh, S. M. (2013). Synthesis, characterization and biological properties of Co(II), Ni(II), Cu(II) and Zn(II) complexes with an SNO functionalized ligand. Arabian Journal of Chemistry, 6, 191–196. DOI: 10.1016/j.arabjc.2010.10.002.

    CAS  Article  Google Scholar 

  38. Salanti, A., Orlandi, M., Tolppa, E. L., & Zoia, L. (2010). Oxidation of isoeugenol by salen complexes with bulky substituents. International Journal of Molecular Sciences, 11, 912–926. DOI: 10.3390/ijms11030912.

    CAS  Article  Google Scholar 

  39. Sheikh, J., Juneja, H., Ingle, V., Ali, P., & Hadda, T. B. (2013). Synthesis and in vitro biology of Co(II), Ni(II), Cu(II) and Zinc(II) complexes of functionalized β-diketone bearing energy buried potential antibacterial and antiviral O,O pharmacophore sites. Journal of Saudi Chemical Society, 17, 269–276. DOI: 10.1016/j.jscs.2011.04.004.

    CAS  Article  Google Scholar 

  40. Shimokawa, C., Tachi, Y., Nishiwaki, N., Ariga, M., & Itoh, S. (2006). Structural characterization of copper(I) complexes supported by β-diketiminate ligands with different substitution patterns. Bulletin of the Chemical Society of Japan, 79, 118–125. DOI: 10.1246/bcsj.79.118.

    CAS  Article  Google Scholar 

  41. Spirtovic-Halilovic, S., Salihovic, M., Dzudzevic-Cancar, H., Trifunovic, S., Roca, S., Softic, D., & Zavrsnik, D. (2014). DFT study and microbiology of some coumarin-based compounds containing a chalcone moiety. Journal of the Serbian Chemical Society, 79, 435–443. DOI: 10.2298/jsc130628077s.

    CAS  Article  Google Scholar 

  42. Tripathi, B., Bhatia, R., Walia, S., & Kumar, B. (2012). Chemical composition and evaluation of tagetes erecta (var. Pusa narangi genda) essential oil for its antioxidant and antimicrobial activity. Biopesticides International, 8, 138–146.

    Google Scholar 

  43. Tümer, M., K¨oksal, H., & Serin, S. (1998). Synthesis, characterization and thermal investigation of some metal complexes derived from new Schiff base ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 28, 1393–1404. DOI: 10.1080/00945719809349413.

    Article  Google Scholar 

  44. Türkkan, B., Saribo˘ga, B., & Saribo˘ga, N. (2011). Synthesis, characterization and antimicrobial activity of 3,5-di-tertbutylsalicylaldehyde-S-methylthiosemicarbazones and their Ni(II) complexes. Transition Metal Chemistry, 36, 679–684. DOI: 10.1007/s11243-011-9518-7.

    Article  Google Scholar 

  45. Uma, V., Elango, M., & Nair, B. U. (2007). Copper (II) terpyridine complexes: effect of substituent on DNA binding and nuclease activity. European Journal of Inorganic Chemistry, 2007, 3484–3490. DOI: 10.1002/ejic.200700053.

    Google Scholar 

  46. Vedanayaki, S., Jayaseelan, P., Sandhanamalar, D., & Rajavel, R. (2011). Synthesis, spectral characterization and antimicrobial activities of unsymmetrical Schiff base metal complexes. Asian Journal of Chemistry, 23, 407–409.

    CAS  Google Scholar 

  47. von Eschwege, K. G., & Conradie, J. (2011). Redox potentials of ligands and complexes-a DFT approach. South African Journal of Chemistry, 64, 203–209.

    Google Scholar 

  48. von Pechmann, H. (1884). Neue Bildungsweise der Cumarine. Synthese des Daphnetins. I. Berichte Der Deutschen Chemischen Gesellschaft, 17, 929–936. DOI: 10.1002/cber.188401701248. (in German)

    Article  Google Scholar 

  49. Williams, D. N., Ehrman, S. H., & Pulliam Holoman, T. R. (2006). Evaluation of the microbial growth response to inorganic nanoparticles. Journal of Nanobiotechnology, 4, 3. DOI: 10.1186/1477-3155-4-3.

    Article  Google Scholar 

  50. Yano, S., Takizawa, S., Sugita, H., Takahashi, T., Shioi, H., Tsubomura, T., & Yoshikawa, S. (1985). Reactions of metal complexes with carbohydrates: Synthesis and characterization of novel nickel(II) complexes containing glycosylamines derived from a monosaccharide and a diamine. An X-ray crystallographic study of (ethylenediamine){N-(2-aminoethyl)-D-fructopyranosylamine}nickel(II)–Cl2–CH3OH. Carbohydrate Research, 142, 179–193. DOI: 10.1016/0008-6215(85) 85021-7.

    CAS  Article  Google Scholar 

  51. Young, D. (2001). Computational chemistry: A practical guide for applying techniques to real world problems. New York, NY, USA: Wiley.

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vibha Sharma.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Arora, E.K. & Cardoza, S. Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex. Chem. Pap. 70, 1493–1502 (2016). https://doi.org/10.1515/chempap-2016-0083

Download citation

Keyword

  • DFT
  • transition metal complexes
  • biological activities
  • antibacterial studies
  • antioxidant activity