Albrecht, A., Felk, A., Pichova, I., Naglik, J. R., Schaller, M., de Groot, P., MacCallum, D., Odds, F. C., Schäfer, W., Klis, F., Monod, M., & Hube, B. (2006). Glycosylphosphatitylinositolanchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. Journal of Biological Chemistry, 281, 688–694. DOI: 10.1074/jbc.m509297200.
CAS
Article
Google Scholar
Amberg, D. C., Burke, D. J., & Strathern, J. N. (2005). Yeast RNA isolations, techniques and protocols #6. In D. C. Amberg, D. J. Burke, & J. N. Strathern (Eds.), Methods in yeast genetics (pp. 127–131). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
Google Scholar
Bader, O., Schaller, M., Klein, S., Kukula, J., Haack, K., M¨uhlschlegel, F., Korting, H. C., Schäfer, W., & Hube, B. (2001). The KEX2 gene of Candida glabrata is required for cell surface integrity. Molecular Microbiology, 41, 1431–1444. DOI: 10.1046/j.1365-2958.2001.02614.x.
CAS
Article
Google Scholar
Beggah, S., Léchenne, B., Reichard, U., Foundling, S., & Monod, M. (2000). Intra-and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology, 146, 2765–2773. DOI: 10.1099/00221287-146-11-2765.
CAS
Article
Google Scholar
Bizzerra, F. C., Melo, A. S. A., Katchburian, E., Freym¨uller, E., Straus, A. H., Takahashi, H. K., & Colombo, A. L. (2011). Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. Antimicrobial Agents and Chemotherapy, 55, 302–310. DOI: 10.1128/aac.00633-10.
Article
Google Scholar
Bondaryk, M., Ochal, Z., & Staniszewska, M. (2014). Sulfone derivatives reduce growth, adhesion and aspartic protease SAP2 gene expression. World Journal of Microbiology and Biotechnology, 30, 2511–2521. DOI: 10.1007/s11274-014-1676-2.
CAS
Article
Google Scholar
Bondaryk, M., Lukowska-Chojnacka, E., & Staniszewska, M. (2015). Tetrazole activity against Candida albicans. The role of KEX2 mutations in the sensitivity to (±)-1-[5-(2-chlorophenyl)-2H-tetrazol-2-yl]propan-2-yl acetate Bioorganic & Medicinal Chemistry Letters, 25, 2657–2663. DOI: 10.1016/j.bmcl.2015.04.078.
CAS
Article
Google Scholar
Bruno, V. M., Shetty, A. C., Yano, J., Fidel, P. L., Jr., Noverr, M. C., & Peters, B. M. (2015). Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio, 6, e00182–15. DOI: 10.1128/mbio.00182-15.
Article
Google Scholar
Buu, L. M., & Chen, Y. C. (2013). Sap6, a secreted aspartyl proteinase, participates in maintenance the cell wall surface integrity of Candida albicans. Journal of Biomedical Science, 20, 101. DOI: 10.1186/1423-0127-20-101.
Article
Google Scholar
Buu, L. M., & Chen, Y. C. (2014). Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicans. Journal of Biomedical Science, 21, 22. DOI: 10.1186/1423-0127-21-22.
Article
Google Scholar
Carvalho-Pereira, J., Vaz, C., Carneiro, C., Pais, C., & Sampaio, P. (2015). Genetic variability of Candida albicans Sap8 propeptide in isolates from different types of infection. Biomed Research International, 2015, 148–343. DOI: 10.1155/2015/148343.
Article
Google Scholar
Clinical and Laboratory Standards Institute (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts. M27-A3. Wayne, PA, USA: Clinical and Laboratory Standards Institute.
Google Scholar
Correira, A., Lermann, U., Teixeira, L., Cerca, F., Botelho, S., da Costa, R. M., Sampaio, P., Gärtner, F., Morschhäuser, J., Vilanova, M., & Pais, C. (2010). Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infection and Immunity, 78, 4839–4849. DOI: 10.1128/iai.00248-10.
Article
Google Scholar
Costa-de-Oliveira, S., Isabel, M., Miranda, I. M., Silva-Diasa, A., Silva, A. P., Rodriguesa, A. G., & Pina-Vaza, C. (2015). Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection. Antimicrob Agents Chemother, 59, 4289–4292. DOI: 10.1128/aac.05056-14.
CAS
Article
Google Scholar
Cuéllar-Cruz, M., Vega-González, A., Mendoza-Novelo, B., López-Romero, E., Ruiz-Baca, E., Quintanar-Escorza, M. A., & Villagómez-Castro, J. C. (2012). The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. European Journal of Clinical Microbiology and Infectious Diseases, 31, 2513–2527. DOI: 10.1007/s10096-012-1634-6.
Article
Google Scholar
De Bernardis, F., Liu, H., O’Mahony, R., La Valle, R., Bartollino, S., Sandini, S., Grant, S., Brewis, N., Tomlinson, I., Basset, R. C., Holton, J., Roitt, I. M., & Cassone, A. (2007). Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. Journal of Infectious Diseases, 195, 149–157. DOI: 10.1086/509891.
Article
Google Scholar
Delbr¨uck, S., & Ernst, J. F. (1993). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans. Molecular Microbiology, 10, 859–866. DOI: 10.1111/j.1365-2958.1993.tb00956.x.
Article
Google Scholar
Dunkel, N., & Morschhäuser, J. (2011). Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sap4Δsap5Δsap6Δ mutant. Eukaryot Cell, 10, 54–62. DOI: 10.1128/ec.00281-10.
CAS
Article
Google Scholar
El-Kirat-Chatel, S., Beaussart, A., Alsteens, D., Jackson, D. N., Lipke, P. N., & Dufr˛ene, Y. F. (2013). Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale, 7, 1105–1115. DOI: 10.1039/c2nr33215a.
Article
Google Scholar
Fonzi, W. A., & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics, 134, 717–728.
CAS
Google Scholar
Garibotto, F. M., Garro, A. D., Masman, M. F., Rodríguez, A. M., Luiten, P. G. M., Raimondi, M., Zacchino, S. A., Somlai, C., Penke, B., & Enriz, R. D. (2010). New small-size peptides possessing antifungal activity. Bioorganic & Medicinal Chemistry, 18, 158–167. DOI: 10.1016/j.bmc.2009.11.009.
CAS
Article
Google Scholar
Gillum, A. M., Tsay, E. Y. H., & Kirsch, D. R. (1984). Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular & General Genetics, 198, 179–182. DOI: 10.1007/bf00328721.
CAS
Article
Google Scholar
Gregori, C., Glaser, W., Frohner, I. E., Reinoso-Martín, C., Rupp, S., Sch¨uller, C., & Kuchler, K. (2011). Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryotic Cell, 10, 1694–1704. DOI: 10.1128/ec.05187-11.
CAS
Article
Google Scholar
Jacobsen, I. D., Wilson, D., Wächtler, B., Brunke, S., Naglik, J. R., & Hube, B. (2012). Candida albicans dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 10, 85–93. DOI: 10.1586/eri.11.152.
Article
Google Scholar
Jung, U. S., Sobering, A. K., Romeo, M. J., & Levin, D. E. (2002). Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Molecular Microbiology, 46, 781–789. DOI: 10.1046/j.1365-2958.2002.03198.x.
CAS
Article
Google Scholar
Korzy´nski, M. D., Borys, M., Bia´lek, J., & Ochal, Z. (2014). A novel method for the synthesis of aryl trihalomethyl sulfones and their derivatization: the search for new sulfone fungicides. Tetrahedron Letters, 55, 745–748. DOI: 10.1016/j.tetlet.2013.12.012.
Article
Google Scholar
Kumar, R., & Shukla, P. K. (2010). Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Fungal Biology, 114, 189–197. DOI: 10.1016/j.funbio.2009.12.003.
CAS
Article
Google Scholar
Kumar, R., Saraswat, D., Tati, S., & Edgerton, M. (2015). Novel aggregation properties of Candida albicans secreted aspartyl proteinase Sap6 mediates virulence in oral candidiasis. Infection and Immunity, 83, 2614–2626. DOI: 10.1128/iai.00282-15.
CAS
Article
Google Scholar
Kuo, Z. Y., Chuang, Y. J., Chao, C. C., Liu, F. C., Lan, C. Y., & Chen, B. S. (2013). Identification of infectionand defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-Zebrafish infection model. Journal of Innate Immunity, 5, 137–152. DOI: 10.1159/000347104.
CAS
Article
Google Scholar
Lermann, U., & Morschhäuser, J. (2008). Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology, 154, 3281–3295. DOI: 10.1099/mic.0.2008/022525-0.
CAS
Article
Google Scholar
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408. DOI: 10.1006/meth.2001.1262.
CAS
Article
Google Scholar
Ma, C., Du, F., Yan, L., He, G., He, J., Wang, C., Rao, G., Jiang, Y., & Xu, G. (2015). Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules, 20, 17913–17928. DOI: 10.3390/molecules201017913.
CAS
Article
Google Scholar
Majoros, L., Kardos, G., Szabó, B., & Sipiczki, M. (2005). Caspofungin susceptibility testing of Candida inconspicua: correlation of different methods with the minimal fungicidal concentration. Antimicrobial Agents and Chemotherapy, 49, 3486–3488. DOI: 10.1128/aac.49.8.3486-3488.2005.
CAS
Article
Google Scholar
Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4, 119–128. DOI: 10.4161/viru.22913.
Article
Google Scholar
Miranda, T. T., Vianna, C. R., Rodrigues, L., Rosa, C. A., & Corr˛ea, A., Jr. (2015). Differential proteinase patterns among Candida albicans strains isolated from root canal and lingual dorsum: possible roles in periapical disease. Journal of Endodontics, 41, 841–845. DOI: 10.1016/j.joen.2015.01.012.
Article
Google Scholar
Mores, A. U., Souza, R. D., Cavalca, L., de Paula e Carvalho, A., Gursky, L. C., Rosa, R. T., Samaranayake, L. P., & Rosa, E. A. R. (2009). Enhancement of secretory aspartyl protease production in biofilms of Candida albicans exposed to subinhibitory concentrations of fluconazole. Mycoses, 54, 195–201. DOI: 10.1111/j.1439-0507.2009.01793.x.
Article
Google Scholar
Mukherjee, P. K., Chandra, J., Kuhn, D. M., & Ghannoum, M. A. (2003). Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infection and Immunity, 71, 4333–4340. DOI: 10.1128/iai.71.8.4333–4340.2003.
CAS
Article
Google Scholar
Munro, C. A., Selvagglnl, S., de Bruljn, I., Walker, L., Lenardon, M. D., Gerssen, B., Milne, S., Brown, A. J. P., & Gow, N. A. (2007). The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular Microbiology, 63, 1399–1413. DOI: 10.1111/j.1365-2958.2007.05588.x.
CAS
Article
Google Scholar
Naglik, J. R., Challacombe, S. J., & Hube, B. (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and Molecular Biology Reviews, 67, 400–428. DOI: 10.1128/mmbr.67.3.400-428.2003.
CAS
Article
Google Scholar
Naglik, J., Albrecht, A., Bader, O., & Hube, B. (2004). Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 6, 915–926. DOI: 10.1111/j.1462-5822.2004.00439.x.
CAS
Article
Google Scholar
Naglik, J. R., Moyes, D., Makwana, J., Kanzaria, P., Tsichlaki, E., Weindl, G., Tappuni, A. R., Rodgers, C. A., Woodman, A. J., Challacombe, S. J., Schaller, M., & Hube, B. (2008). Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology, 154, 3266–3280. DOI: 10.1099/mic.0.2008/022293-0.
CAS
Article
Google Scholar
Newport, G., & Agabian, N. (1997). KEX2 influences Candida albicans proteinase secretion and hyphal formation. Journal of Biological Chemistry, 272, 28954–28961. DOI: 10.1074/jbc.272.46.28954.
CAS
Article
Google Scholar
Newport, G., Kuo, A., Flattery, A., Gill, C., Blake, J. J., Kurtz, M., Abruzzo, G. K., & Agabian, N. (2003). Inactivation of Kex2p diminishes the virulence of Candida albicans. Journal of Biological Chemistry, 278, 1713–1720. DOI: 10.1074/jbc.m209713200.
CAS
Article
Google Scholar
Paranjape, V., & Datta, A. (1991). Overexpression of the actin gene is associated with the morphogenesis of Candida albicans. Biochemical and Biophysical Research Communications, 179, 423–427. DOI: 10.1016/0006-291x(91)91387-r.
CAS
Article
Google Scholar
Pfaller, M. A., Bale, M., Buschelman, B., Lancaster, M., Espinel-Ingroff, A., Rex, J. H., & Rinaldi, M. G. (1994). Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards Proposed Standard Methods. Journal of Clinical Microbiology, 32, 1650–1653.
CAS
Google Scholar
Pfaller, M. A., & Diekema, D. J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews, 20, 133–163. DOI: 10.1128/cmr.00029-06.
CAS
Article
Google Scholar
Pfaller, M. A., Andes, D. R., Diekema, D. J., Horn, D. L., Reboli, A. C., Rotstein, C., Franks, B., & Azie, N. E. (2014). Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the prospective antifungal therapy (PATH) registry 2004–2008. PLoS ONE, 9, e101510. DOI: 10.1371/journal. pone.0101510.
Article
Google Scholar
Phillips, A. J., Sudbery, I., & Ramsdale, M. (2003). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proceedings of the National Academy of Sciences, 100, 14327–14332. DOI: 10.1073/pnas.2332326100.
CAS
Article
Google Scholar
Pierce, C. G., & Lopez-Ribot, J. L. (2013). Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opinion in Drug Discovery, 8, 1117–1126. DOI: 10.1517/17460441.2013.807245.
CAS
Article
Google Scholar
Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L., & López-Ribot, J. L. (2002a). Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 49, 973–980. DOI: 10.1093/jac/dkf049.
CAS
Article
Google Scholar
Ramage, G., VandeWalle, K., López-Ribot, J. L., & Wickes, B. L. (2002b). The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiology Letters, 214, 95–100. DOI: 10.1111/j.1574-6968.2002.tb11330.x.
CAS
Article
Google Scholar
Richardson, J. P., & Moyes, D. L. (2015). Adaptive immune responses to Candida albicans infection. Virulence, 6, 327–337. DOI: 10.1080/21505594.2015.1004977.
CAS
Article
Google Scholar
Samaranayake, Y. H., Cheung, B. P., Yau, J. Y., Yeung, S. K., & Samaranayake, L. P. (2013). Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE, 8, e62902. DOI: 10.1371/journal.pone.0062902.
CAS
Article
Google Scholar
Schneider, S., & Morschhäuser, J. (2015). Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors. Antimicrobial Agents and Chemotherapy, 59, 558–569. DOI: 10.1128/aac.04448-14.
Article
Google Scholar
Sherry, L., Rajendran, R., Lappin, D. F., Borghi, E., Perdoni, F., Falleni, M., Tosi, D., Smith, K., Williams, C., Jones, B., Nile, C. J., & Ramage, G. (2014). Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiology, 14, 182. DOI: 10.1186/1471-2180-14-182.
Article
Google Scholar
Silva, N. C., Nery, J. M., & Dias, A. L. (2013). Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses, 57, 1–11. DOI: 10.1111/myc.12095.
Article
Google Scholar
Staib, P., Lermann, U., Blaß-Warmuth, J., Degel, B., W¨urzner, R., Monod, M., Schirmeister, T., & Morschhäuser, J. (2008). Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzymespecific inhibitor screening. Antimicrobial Agents and Chemotherapy, 52, 146–156. DOI: 10.1128/aac.01072-07.
CAS
Article
Google Scholar
Staniszewska, M., Bondaryk, M., & Ochal, Z. (2014a). Polish patent No. PL P.408765. Warsaw, Poland: Polish Patent Office.
Google Scholar
Staniszewska, M., Bondaryk, M., Malewski, T., & Schaller, M. (2014b). The expression of the Candida albicans gene SAP4 during hyphal formation in human serum and in adhesion to monolayer cell culture of colorectal carcinoma Caco-2 (ATCC). Central European Journal of Biology, 9, 796–810. DOI: 10.2478/s11535-014-0311-4.
CAS
Google Scholar
Staniszewska, M., Bondaryk, M., & Ochal, Z. (2015a). Susceptibility of Candida albicans to new synthetic sulfone derivatives. Archiv der Pharmazie, 348, 132–143. DOI: 10.1002/ardp.201400360.
CAS
Article
Google Scholar
Staniszewska, M., Bondaryk, M., & Ochal, Z. (2015b). New synthetic sulfone derivatives inhibit growth, adhesion and the leucine arylamidase APE2 gene expression of Candida albicans in vitro. Bioorganic & Medicinal Chemistry, 23, 314–321. DOI: 10.1016/j.bmc.2014.11.038.
CAS
Article
Google Scholar
Teste, M. A., Duquenne, M., Fran¸cois, J. M., & Parrou, J. L. (2009). Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Molecular Biology, 10, 1–15. DOI: 10.1186/1471-2199-10-99.
Article
Google Scholar
Watts, H. J., Cheah, F. S. H., Hube, B., Sanglad, D., & Gow, N. A. R. (1998). Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiology Letters, 159, 129–135. DOI: 10.1111/j.1574-6968.1998.tb12851.x.
CAS
Article
Google Scholar
Wu, T., Wright, K., Hurst, S. F., & Morrison, C. J. (2000). Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. Antimicrobial Agents and Chemotherapy, 44, 1200–1208. DOI: 10.1128/aac.44.5.1200-1208.2000.
CAS
Article
Google Scholar
Zavrel, M., Majer, O., Kuchler, K., & Rupp, S. (2012). Transcription factor Efg1 shows a haploinsufficiency phenotype in modulating the cell wall architecture and immunogenicity of Candida albicans. Eukaryotic Cell, 11, 129–140. DOI: 10.1128/ec.05206-11.
CAS
Article
Google Scholar