Sorption properties of sheep wool irradiated by accelerated electron beam

Abstract

Electron beam (EB) irradiated wool was examined for sorption of chromic ions. Sorption increased with the adsorbed dose non-monotonously, which is a result of the generation of S-oxidized groups, secondary structure variation, and the breaking of the keratin backbone. For a dose of 400 kGy, an increase by 120 % was observed at the cystine dioxide and cysteine acid amounts. Examining sorption of unexposed wool and that irradiated with doses of 25 kGy and 40 kGy for basic, methylene blue (MB), or acidic, pyrogallol red (PR) dyes revealed that such low doses have no effect on the carboxylic or amino groups of keratin. Sorption of MB is independent of the EB treatment and is identical for both samples due to the interaction of MB amino groups with the carboxylic groups of wool; however, the sorption capacity for PR is a function of the EB treatment. The sample irradiated with the dose of 25 kGy showed higher PR sorption than that with the EB dose of 40 kGy, which was equal to that of unexposed wool. While the 25 kGy sample provided more active sites for PR interaction compared with the unexposed one, the 40 kGy sample contained already enough active sites to generate intra- and intermolecular interactions inside wool. Thus, PR adherence to the 40 kGy sample was restricted and comparable to the level of unexposed wool.

This is a preview of subscription content, access via your institution.

References

  1. Abreu, A. M., & Toffoli, S. M. (2009). Characterization of a chromium-rich tannery waste and its potential use in ceramics. Ceramics International, 35, 2225–2234. DOI: 10.1016/j.ceramint.2008.12.011.

    CAS  Article  Google Scholar 

  2. Aluigi, A., Vineis, C., Tonin, C., Tonetti, C., Varesano, A., & Mazzuchetti, G. (2009). Wool keratin-based nanofibres for active filtration of air and water. Journal of Biobased Materials and Bioenergy, 3, 311–319. DOI: 10.1166/jbmb.2009. 1039.

    CAS  Article  Google Scholar 

  3. Aluigi, A., Tonetti, C., Vineis, C., Tonin, C., & Mazzuchetti, G. (2011). Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. European Polymer Journal, 47, 1756–1764. DOI: 10.1016/j.eurpolymj.2011.06.009.

    CAS  Article  Google Scholar 

  4. Arai, T., Freddi, G., Colonna, G. M., Scotti, E., Boschi, A., Murakami, R., & Tsukada, M. (2001). Absorption of metal cations by modified B. mori silk and preparation of fabrics with antimicrobial activity. Journal ofApplied Polymer Science, 80, 297–303. DOI: 10.1002/1097-4628(20010411)80:2< 297::AID-APP1099> 3.0.CO;2-Z.

    CAS  Article  Google Scholar 

  5. Atia, A. A., Donia, A. M., & Yousif, A. M. (2003). Synthesis of amine and thiol chelating resins and study of their interaction with zinc(II), cadmium(II) and mercury(II) ions in their aqueous solutions. Reactive and Functional Polymers, 56, 75–82. DOI: 10.1016/s1381-5148(03)00046-4.

    CAS  Article  Google Scholar 

  6. Axelson, G., Hamrin, K., Fahlman, A., Nordling, C., & Lindberg, B. J. (1967). Electron spectroscopic evidence of the thiolsulphonate structure of cystine S-dioxide. Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2015–2020. DOI: 10.1016/0584-8539(67)80089-8.

    CAS  Article  Google Scholar 

  7. Church, J. S., & Millington, K. R. (1996). Photodegradation of wool keratin: Part I. Vibrational spectroscopic studies. Biospectroscopy, 2, 249–258. DOI: 10.1002/(SICI)1520-6343(1996)2:4 <249::AID-BSPY6> 3.0.CO;2-1.

    CAS  Article  Google Scholar 

  8. El-Sayed, H., Kantouch, A., & Raslan, W. M. (2004). Environmental and technological studies on the interaction of wool with some metal ions. Toxicological & Environmental Chemistry, 86, 141–146. DOI: 10.1080/02772240410001688233.

    Article  Google Scholar 

  9. Evangelou, M. W. H., Ebel, M., Koerner, A., & Schaeffer, A. (2008). Hydrolysed wool: A novel chelating agent for metal chelant-assisted phytoextraction from soil. Chemosphere, 72, 525–531. DOI: 10.1016/j.chemosphere.2008.03.063.

    CAS  Article  Google Scholar 

  10. Fabiani, C., Ruscio, F., Spadoni, M., & Pizzichini, M. (1997). Chromium(III) salts recovery process from tannery wastewaters. Desalination, 108, 183–191. DOI: 10.1016/s0011-9164(97)00026-x.

    CAS  Article  Google Scholar 

  11. Freddi, G., Arai, T., Colonna, G. M., Boschi, A., & Tsukada, M. (2001). Binding of metal cations to chemically modified wool and antimicrobial properties of the wool-metal complexes. Journal of Applied Polymer Science, 82, 3513–3519. DOI: 10.1002/app.2213.

    CAS  Article  Google Scholar 

  12. Ghosh, A., & Collie, S. R. (2014). Keratinous materials as novel absorbent systems for toxic pollutants. Defence Science Journal, 64, 209–221. DOI: 10.14429/dsj.64.7319.

    CAS  Article  Google Scholar 

  13. Gotoh, T., Matsushima, K., & Kikuchi, K. I. (2004). Adsorption of Cu and Mn on covalently cross-linked alginate gel beads. Chemosphere, 55, 57–64. DOI: 10.1016/j.chemosphere.2003.10.034.

    CAS  Article  Google Scholar 

  14. Hanzlíkova, Z., Braniša, J., Ondruška, J., & Porubská, M. (2016). The uptake and release of humidity by wool irradiated with electron beam. Journal of Central European Agriculture, accepted.

    Google Scholar 

  15. Hussain, T. (2012). Dyeing wool with acid dyes. Retrieved January 2, 2015, from http://www.academia.edu/2641253/Dyeing_Wool_with_Acid_Dyes

    Google Scholar 

  16. Kan, C. W., Chan, K., Yuen, C. W. M., & Miao, M. H. (1998). Surface properties of low-temperature plasma treated wool fabrics. Journal of Materials Processing Technology, 83, 180–184. DOI: 10.1016/s0924-0136(98)00060-0.

    Article  Google Scholar 

  17. Kan, C. W., & Yuen, C. W. M. (2006). Surface characterisation of low temperature plasma-treated wool fibre. Journal of Materials Processing Technology, 178, 52–60. DOI: 10.1016/j.jmatprotec.2005.11.018.

    CAS  Article  Google Scholar 

  18. Monier, M., Ayad, D. M., & Sarhan, A. A. (2010). Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. Journal of Hazardous Materials, 176, 348–355. DOI: 10.1016/j.jhazmat.2009.11.034.

    CAS  Article  Google Scholar 

  19. Montgomery, M. A., & Elimelech, M. (2007). Water and sanitation in developing countries: Including health in the equation. Environmental Science & Technology, 41, 17–24. DOI: 10.1021/es072435t.

    Article  Google Scholar 

  20. Oae, S., & Doi, J. T. (1991). Organic sulfur chemistry: Structure and mechanism. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  21. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., & Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: a review. Science of the Total Environment, 116, 31–52. DOI: 10.1016/0048-9697(92)90363-w.

    CAS  Article  Google Scholar 

  22. Poole, A. J., Church, J. S., & Huson, M. G. (2009). Environmentally sustainable fibers from regenerated protein. Biomacromolecules, 10, 1–8. DOI: 10.1021/bm8010648.

    CAS  Article  Google Scholar 

  23. Porubská, M., Hanzlíková, Z., Braniša, J., Kleinová, A., Hybler, P., Fülöp, M., Ondruška, J., & Jomová, K. (2015). The effect of electron beam on sheep wool. Polymer Degradation and Stability, 111, 151–158. DOI: 10.1016/j.polymdegradstab. 2014.11.009.

    Article  Google Scholar 

  24. Radetić, M., Jocić, J., Jovančić, P., & Rajaković, L. (2004). Sorption properties of wool. Hemijska Industrija, 58, 315–321. DOI: 10.2298/hemind0408315r. (in Serbian)

    Article  Google Scholar 

  25. Taddei, P., Monti, P., Freddi, G., Arai, T., & Tsukada, M. (2003). Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: an IR investigation. Journal of Macromolecular Structure, 650, 105–113. DOI: 10.1016/s0022-2860(03)00147-9.

    CAS  Article  Google Scholar 

  26. Tsukada, M., Arai, T., Colonna, G. M., Boschi, A., & Freddi, G. (2003). Preparation of metal-containing protein fibers and their antimicrobial properties. Journal of Applied Polymer Science, 89, 638–644. DOI: 10.1002/app.11911.

    CAS  Article  Google Scholar 

  27. Xu, W. L., Shen, X. L., Wang, X., & Ke, G. Z. (2006). Effective methods for further improving the wool properties treated by corona discharge. Sen’i Gakkaishi, 62, 111–114. DOI: 10.2115/fiber.62.111.

    CAS  Article  Google Scholar 

  28. Zhao, X., & He, J. X. (2011). Improvement in dyeability of wool fabric by microwave treatment. Indian Journal of Fibre & Textile Research, 36, 58–62.

    CAS  Google Scholar 

  29. Zheljazkov, V. D., Stratton, G. W., Pincock, J., Butler, S., Jeliazkova, E. A., Nedkov, N. K., & Gerard, P. D. (2009). Wool-waste as organic nutrient source for containergrown plants. Waste Management, 29, 2160–2164. DOI: 10.1016/j.wasman.2009.03.009.

    CAS  Article  Google Scholar 

  30. Zoccola, M., Aluigi, A., & Tonin, C. (2009). Characterisation of keratin biomass from butchery and wool industry wastes. Journal of Molecular Structure, 938, 35–40. DOI: 10.1016/j.molstruc.2009.08.036.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mária Porubská.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanzlíková, Z., Braniša, J., Hybler, P. et al. Sorption properties of sheep wool irradiated by accelerated electron beam. Chem. Pap. 70, 1299–1308 (2016). https://doi.org/10.1515/chempap-2016-0062

Download citation

Keywords

  • wool
  • electron beam
  • sorption
  • Cr3+
  • methylene blue
  • pyrogallol red