Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite

Abstract

Kaolinite is a suitable material for fixing TiO2 nanoparticles in a composite form. The kaolinite/TiO2 composite has promising photoactive properties which are as important as is the possible impact of the composite on the environment. Accordingly, the stability of the kaolinite/TiO2 composite dried at 105°C (KTI1) and calcined at 600 °C (KTI6) and the stability of the original kaolinite treated at various temperatures (105–800 °C) were studied by the leaching test in accordance with European standard BS EN 12457-2:2002 (British Standards Institution, 2002). The stability was evaluated on the basis of elements leached from the materials to extraction agents. Atomic emission spectrometry with inductively coupled plasma was used for determining the concentration of elements. In order to better understand the process of calcination and the structure changes in the kaolinite/TiO2 composite and calcined kaolinite, the materials were evaluated using X-ray powder diffraction and infrared spectroscopy with Fourier transformation. The processes of kaolinite dehydroxylation and metakaolinite formation were observed. Kaolinite is an appropriate carrier for composite preparation due to its stability even after its treatment at high temperatures. The experiments confirmed the TiO2 nanoparticles to be very strongly bound to the kaolinite surface. On the other hand, the experiments demonstrated that the presence of TiO2 on the kaolinite surface caused the release of Al in high concentrations to the final extracts, especially after kaolinite/TiO2 composite calcination.

This is a preview of subscription content, access via your institution.

References

  1. Auger, C., Han, S. W., Appanna, V. P., Thomas, S. C., Ulibarri, G., & Appanna, V. D. (2013). Metabolic reengineering invoked by microbial systems to decontaminate aluminium: Implications for bioremediation technologies. Biotechnology Advances, 31, 266–273. DOI: 10.1016/j.biotechadv.2012.11.008.

    CAS  Article  Google Scholar 

  2. British Standards Institution (2002). British Standard: Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). BS EN 12457-2:2002. London, UK.

    Google Scholar 

  3. Chong, M. N., Vimonses, V., Lei, S. M., Jin, B., Chow, C., & Saint, C. (2009). Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous and Mesoporous Materials, 17, 233–242. DOI: 10.1016/j.micromeso.2008.06.039.

    Article  Google Scholar 

  4. Ding, Z. H., Wang, Q. Y., & Hu, X. (2011). Fractionation of Zn and Pb in bulk soil and size fractions of water-stable micro-aggregates of lead/zinc tailing soil under simulated acid rain. Procedia Environmental Sciences, 10, 325–330. DOI: 10.1016/j.proenv.2011.09.053.

    CAS  Article  Google Scholar 

  5. Gad, S. C. (2014). Aluminum. In P. Wexler (Ed.), Encyclopedia of toxicology (3rd ed., pp. 161–163). Cambridge, MA, USA: Academic Press.

    Google Scholar 

  6. Hasson, D., & Bendrihem, O. (2006). Modeling remineralization of desalinated water by limestone dissolution. Desalination, 190, 189–200. DOI: 10.1016/j.desal.2005.09.003.

    CAS  Article  Google Scholar 

  7. Heide, K., & Földvari, M. (2006). High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2Os(OH)4] decomposition. Thermochimica Acta, 446, 106–112. DOI: 10.1016/j.tca.2006.05.011.

    CAS  Article  Google Scholar 

  8. Hruška, J., Krám, P., & Moldan, F. (1997). Vliv kyselého deste na povrchové vody. Vesmír, 75, 373–375. (in Czech)

    Google Scholar 

  9. Kakali, G., Perraki, T., Tsivilis, S., & Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 73–80. DOI: 10.1016/s0169-1317(01)00040-0.

    CAS  Article  Google Scholar 

  10. Kočí, K., Matějka, V., Kovář, P., Lacný, Z., & Obalová, L. (2011). Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catalysis Today, 161, 105–109. DOI: 10.1016/j.cattod.2010.08.026.

    Article  Google Scholar 

  11. Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY, USA: Willey.

    Google Scholar 

  12. Makó, É., Senkár, Z., Kristóf, J., & Vágvölgyi, V. (2006). Surface modification of mechanochemically activated kaolinites by selective leaching. Journal of Colloid and Interface Science, 294, 362–370. DOI: 10.1016/j.jcis.2005.07.033.

    Article  Google Scholar 

  13. Mamulová Kutláková, K., Tokarský, J., Kovář, P., Vojtěšková, S., Kovářová, A., Smetana, B., Kukutschová, J., Čapková, P., & Matějka, V. (2011). Preparation and characterization of photoactive composite kaolinite/TiO2. Journal of Hazardous Materials, 188, 212–220. DOI: 10.1016/j.jhazmat.2011.01. 106.

    Article  Google Scholar 

  14. Ptáček, P., Šoukal, F., Opravil, T., Nosková, M., Havlica, J., & Brandštetr, J. (2010). The kinetics of Al-Si spinel phase crystallization from calcined kaolin. Journal of Solid State Chemistry, 183, 2565–2569. DOI: 10.1016/j.jssc.2010.08.030.

    Article  Google Scholar 

  15. Railsback, L. B. (1997). Lower pH of acid rain associated with lightning: evidence from sampling within 14 showers and storms in the Georgia Piedmont in summer 1996. Science of the Total Environment, 198, 233–241. DOI: 10.1016/s0048-9697(97)05459-4.

    CAS  Article  Google Scholar 

  16. Ryan, J. L., Lynam, P., Heal, K. V., & Palmer, S. M. (2012). The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK. Science of the Total Environment, 439, 321–331. DOI: 10.1016/j.scitotenv.2012.09.034.

    CAS  Article  Google Scholar 

  17. Sun, Q. Q., Tan, D. N., Ze, Y. G., Sang, X. Z., Liu, X. R., Gui, S. X., Cheng, Z., Cheng, J., Hu, R. P., Gao, G. D., Liu, G., Zhu, M., Zhao, X. Y., Sheng, L., Wang, L., Tang, M., & Hong, F. S. (2012). Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. Journal of Hazardous Materials, 235-236, 47–53. DOI: 10.1016/j.jhazmat.2012.05.072.

    CAS  Article  Google Scholar 

  18. Tokarčíková, M., Tokarský, J., Čabanová, K., Matějka, V., Mamulová Kutláková, K., & Seidlerová, J. (2014). The stability of photoactive kaolinite/TiO2 composite. Composites: Part B: Engineering, 67, 262–269. DOI: 10.1016/j.compositesb.2014.07.009.

    Article  Google Scholar 

  19. Wang, D. Z., Jiang, X., Rao, W., & He, J. Z. (2009). Kinetics of soil cadmium desorption under simulated acid rain. Ecological Complexity, 6, 432–437. DOI: 10.1016/j.ecocom.2009.03.010.

    Article  Google Scholar 

  20. Weiss, Z., & Kuzvart, M. (2005). Clay minerals-their nanostructure and utilization. Prague, Czech Republic: Karolinum. (in Czech)

    Google Scholar 

  21. Withers, A. (2005). Options for recarbonation, remineralisation and disinfection for desalination plants. Desalination, 179, 11–24. DOI: 10.1016/j.desal.2004.11.051.

    CAS  Article  Google Scholar 

  22. Xiong, D. W., Fang, T., Yu, L. P., Sima, X. F., & Zhu, W. T. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 1444–1452. DOI: 10.1016/j.scitotenv.2011.01.015.

    CAS  Article  Google Scholar 

  23. Yang, L., & Steefel, C. I. (2008). Kaolinite dissolution and precipitation kinetics at 22 °C and pH 4. Geochimica et Cosmochimica Acta, 72, 99–116. DOI: 10.1016/j.gca.2007.10. 011.

    CAS  Article  Google Scholar 

  24. Zhou, Q. X., Wang, Y. C., & Bierwagen, G. P. (2012). Influence of the composition of working fluids on flow-accelerated organic coating degradation: Deionized water versus electrolyte solution. Corrosion Science, 55, 97–106. DOI: 10.1016/j.corsci.2011.10.006.

    CAS  Article  Google Scholar 

  25. Zhu, X. S., Chang, Y., & Chen, Y. S. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78, 209–215. DOI: 10.1016/j. chemosphere.2009.11.013.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michaela Tokarčíková.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokarčíková, M., Kutláková, K.M. & Seidlerová, J. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite. Chem. Pap. 70, 1253–1261 (2016). https://doi.org/10.1515/chempap-2016-0059

Download citation

Keywords

  • kaolinite
  • kaolinite/TiO2 photoactive composite
  • calcination
  • leaching test