Skip to main content
Log in

Synthesis, structural and spectroscopic properties of asymmetric Schiff bases derived from 2,3-diaminopyridine

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two Schiff base derivatives, 4-(2-amino-3-pyridyliminomethyl)phenol (I) and 3-(2-amino-3-pyridyliminomethyl)nitrobenzene (II), were synthesised and characterised by spectroscopy. The structure of I was determined by single crystal X-ray diffraction studies. The asymmetric Schiff base derived from 2,3-diaminopyridine selectively recognise transition and heavy metal cations, and some anion. Ligands I and II form stable complexes with Cu2+, Zn2+, Pb2+, Al3+ whereas ligand I also binds F~ ions. The stoichiometry for the host: cation is 1: 1 and 2: 1. The addition of F~ ion in CH3CN to ligand I causes a colour change of the solution from colourless to yellow. The binding behaviour of ligand I towards several ions was investigated using density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M., & El-Din Lashin, F. (2013). Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base. Analytica Chimica Acta, 746, 98–106. DOI: 10.1016/j.aca.2012.08.024.

    Google Scholar 

  • Amin, R. M., Abdel-Kader, N. S., & El-Ansary, A. L. (2012). Microplate assay for screening the antibacterial activity of Schiff bases derived from substituted benzopyran-4-one. Spectrochimica Acta Part A, 95, 517–525. DOI: 10.1016/j.saa.2012.04.042.

    Article  CAS  Google Scholar 

  • Azadbakht, R., Almasi, T., Keypour, H., & Rezaeivala, H. (2013). A new asymmetric Schiff base system as fluorescent chemosensor for Al3+ ion. Inorganic Chemistry Communications, 33, 63–67. DOI: 10.1016/j.inoche.2013.03.014.

    Article  CAS  Google Scholar 

  • Aziz, A. A. A. (2013). A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence, 143, 663–669. DOI: 10.1016/j.jlumin.2013.06.020.

    Article  Google Scholar 

  • Carreno, A., Gacitua, M., Schott, E., Zarate, X., Manriquez, J. M., Preite, M., Ladeira S., Castel, A., Pizarro, N., Vega, A., Chavez, I., & Arratia-Perez, R. (2015). Experimental and theoretical studies of the ancillary ligand (E)-2-((3-amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol in the rhenium(I) core. New Journal of Chemistry, 39, 57255734. DOI: 10.1039/c5nj00772k.

    Google Scholar 

  • Cimerman, Z., Galesic, N., & Bosner, B. (1992). Structure and spectroscopic characteristics of Schiff bases of salicylaldehyde with 2,3-diaminopyridine. Journal of Molecular Structure, 274, 131–144. DOI: 10.1016/0022-2860(92)80152-8.

    Article  CAS  Google Scholar 

  • Cimerman, Z., Galic, N., & Bosner, B. (1997). The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Analytica Chimica Acta, 343, 145–153. DOI: 10.1016/s0003-2670(96)00587-9.

    Article  CAS  Google Scholar 

  • Dai, C. H., & Mao, F. L. (2013). Structure of a new Schiff base cobalt(III) complex with antibacterial activity. Journal of Structural Chemistry, 54, 624–629. DOI: 10.1134/s0022476613030244.

    Article  CAS  Google Scholar 

  • Devaraj, S., Tsui, Y. K., Chiang, C. Y., & Yen, Y. P. (2012). A new dual functional sensor: Highly selective colorimetric chemosensor for Fe3+ and fluorescent sensor for Mg2+. Spectrochimica Acta Part A, 96, 594–599. DOI: 10.1016/j.saa.2012.07.032.

    Article  CAS  Google Scholar 

  • Dubey, P. K., & Ratnam, C. V. (1977). Formation of heterocyclic rings containing nitrogen: Part XXVI–Condensation of pyridine 2,3-diamine with aromatic aldehydes. Proceedings of the Indian Academy of Sciences–Section A, 85, 204–209. DOI: 10.1007/bf03049482.

    CAS  Google Scholar 

  • Erdemir, S., Kocyigit, O., Alici, O., & Malkondu, S. (2013). ‘Naked-eye’ detection of F ions by two novel colorimetric receptors. Tetrahedron Letters, 54, 613–617. DOI: 10.1016/j.tetlet.2012.11.138.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vrenen, T., Kudin, K. N., Burant, J. C., Illa, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennuci, B., Cossi, M., Scalmani, G. Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, K. R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, V. C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Ausin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salavador, P., Dannenberg, J. J., Zakrzewski, V. G., Dopprich, S., Daniels, A.D., Strain. M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavashari, K., Foresman, J. B., Orlitz, J. V., Cui, Q., Baboul, A., Cliffors, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromo, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanyakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, J. L. Gonzalez, C., & Pople, J. (2004). Gaussian 03, Revision 03 [computer software]. Wallingford, CT, USA: Gaussian Inc.

    Google Scholar 

  • Grivani, G., & Akherati, A. (2013). Polymer-supported bis (2-hydroxyanyl) acetylacetonato molybdenyl Schiff base catalyst as effective, selective and highly reusable catalyst in epoxidation of alkenes. Inorganic Chemistry Communications, 28, 90–93. DOI: 10.1016/j.inoche.2012.11.015.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Singh, A. K., Ganjali, M. R., Norouzi, P., Faridbod, F., & Mergu, N. (2013). Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sensors and Actuators B, 182, 642–651. DOI: 10.1016/j.snb.2013.03. 062.

    Article  CAS  Google Scholar 

  • Heo, Y., Kang, Y. Y., Palani, T., Lee, J., & Lee, S. (2012). Synthesis, characterization of palladium hydroxysalen complex and its application in the coupling reaction of arylboronic acids: Mizoroki-Heck type reaction and decarboxylative couplings. Inorganic Chemistry Communications, 23, 1–5. DOI: 10.1016/j.inoche.2012.05.013.

    Article  CAS  Google Scholar 

  • Huang, C. Y., Wan, C. F., Chir, J. L., & Wu, A. T. (2013). A Schiff-based colorimetric fluorescent sensor with potential for detection of fluoride ions. Journal of Fluorescence, 23, 1107–1111. DOI: 10.1007/s10895–013–1257-z.

    Article  CAS  Google Scholar 

  • Jarvo, E. R., Lawrence, B. M., & Jacobsen, E. N. (2005). Highly enantio- and regioselective quinone Diels-Alder reactions cat-alyzed by a tridentate [(Schiff base)CrIII] complex. Angewandte Chemie International Edition, 44, 6043–6046. DOI: 10.1002/anie.200502176.

    Article  CAS  Google Scholar 

  • Jeong, T., Lee, H. K., Jeong, D. C., & Jeon, S. (2005). A lead(II)-selective PVC membrane based on a Schiff base complex of N,N-bis(salicylidene)-2,6-pyridinediamine. Talanta, 65, 543–548. DOI: 10.1016/j.talanta.2004.07.016.

    Article  CAS  Google Scholar 

  • Jeewoth, T., Bhowon, M. G., & Wah, H. L. K. (1999). Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diamino-pyridine. Transition Metal Chemistry, 24, 445–448. DOI: 10.1023/a: 1006917704209.

    Article  CAS  Google Scholar 

  • Ji, C., Day, S. E., & Silvers, W. C. (2008). Catalytic reduction of 1- and 2-bromooctanes by a dinickel(I) Schiff base complex containing two salen units electrogenerated at carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry, 622, 15–21. DOI: 10.1016/j.jelechem.2008.04.023.

    Article  CAS  Google Scholar 

  • Jimenez-Sanchez, A., Farfan, N., & Santillan, R. (2013). A reversible fluorescent-colorimetric Schiff base sensor for Hg2+ ion. Tetrahedron Letters, 54, 5279–5283. DOI: 10.1016/j.tetlet.2013.07.072.

    Article  CAS  Google Scholar 

  • Kleij, A. W., Tooke, D. M., Spek, A. L., & Reek, J. N. H. (2005). A convenient synthetic route for the preparation of nonsymmetric metallo-salphen complexes. European Journal of Inorganic Chemistry, 22, 4626–4632. DOI: 10.1002/ejic.200500628.

    Article  Google Scholar 

  • Kumar, K. S., Ganguly, S., Veerasamy, R., & De Clercq, E. (2010). Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)#-ones. European Journal of Medicinal Chemistry, 45, 5474–5479. DOI: 10.1016/j.ejmech.2010.07.058.

    Article  CAS  Google Scholar 

  • Kumar, M. S., Kumar, S. L. A., & Sreekanth, A. (2013). An efficient triazole-based fluorescent “turn-on” receptor for nakedeye recognition of F and AcO: UV-visible, fluorescence and 1H NMR studies. Materials Science and Engineering: C, 33, 3346–3352. DOI: 10.1016/j.msec.2013.04.018.

    Article  Google Scholar 

  • Lin, C. Y., Huang, K. F., & Yen, Y. P. (2013). A new selective colorimetric and fluorescent chemodosimeter for HSO based on hydrolysis of Schiff base. Spectrochimica Acta Part A, 115, 552–558. DOI: 10.1016/j.saa.2013.06.083.

    Article  CAS  Google Scholar 

  • Liu, G., & Shao, J. (2013). Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 76, 99–105. DOI: 10.1007/s10847-012-0177-x.

    Article  CAS  Google Scholar 

  • Ourari, A., Khelafi, M., Aggoun, D., Jutand, A., & Amatore, C. (2012). Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)-Schiff base complexes as catalysts. Electrochimica Acta, 75, 366–370. DOI: 10.1016/j.electacta.2012.05.021.

    Article  CAS  Google Scholar 

  • Qiao, X., Ma, Z. Y., Xie, C. Z., Xue, F., Zhang, Y. W., Xu, J. Y., Qiang, Z. Y., Lou, J. S., Chen, G. J., & Yan, S. P. (2011). Study on potential antitumor mechanism of a novel Schiff base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of Inorganic Biochemistry, 105, 728–737. DOI: 10.1016/j.jinorgbio.2011.01.004.

    Article  CAS  Google Scholar 

  • Reena, V., Suganya, S., & Velmathi, S. (2013). Synthesis and anion binding studies of azo-Schiff bases: Selective colorimetric fluoride and acetate ion sensors. Journal of Fluorine Chemistry, 153, 89–95. DOI: 10.1016/j.jfluchem.2013.05.010.

    Article  CAS  Google Scholar 

  • Sahin, Z. M., Doganci, E., Yildiz, S. Z., Tuna, M., Yilmaz, F., Yerli, Y., & Gürür, M. (2010). Synthesis and characterization of two-armed poly(e-caprolactone) polymers initiated by Schiff’s base complexes of copper(II) and nickel(II). Synthetic Metals, 160, 1973–1980. DOI: 10.1016/j.synthmet.2010.07.018.

    Article  CAS  Google Scholar 

  • Schiff, H. (1866). Eine neue Reihe organischer Diamine. Annalen der Chemie und Pharmacie, 140, 92–137. DOI: 10.1002/jlac.18661400106. (in German)

    Article  Google Scholar 

  • Schilf, W., Kamienski, B., Rozwadowski, Z., Ambroziak, K., Bieg, B., & Dziembowska, T. (2004). Solid state 15N and 13C NMR study of dioxomolybdenum(VI) complexes of Schiff bases derived from trans-1,2-cyclohexanediamine. Journal of Molecular Structure, 700, 61–65. DOI: 10.1016/j.molstruc.2003.11.055.

    Article  CAS  Google Scholar 

  • Sen, S., Mukherjee, M., Chakrabarty, K., Hauli, I., Mukhopadhyay, S. K., & Chattopadhyay, P. (2013). Cell permeable fluorescent receptor for detection of H2PO4 in aqueous solvent. Organic & Biomolecular Chemistry, 11, 1537–1544. DOI: 10.1039/c2ob27201f.

    Article  CAS  Google Scholar 

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112–122. DOI: 10.1107/s0108767307043930.

    CAS  Google Scholar 

  • Udhayakumari, D., Saravanamoorthy, S., & Velmathi, S. (2012). Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor. Materials Science and Engineering: C, 32, 1878–1882. DOI: 10.1016/j.msec.2012.05.005.

    Article  CAS  Google Scholar 

  • Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91, 415–436. DOI: 10.1021/cr00003a007.

    Article  CAS  Google Scholar 

  • Yang, Y. X., Xue, H. M., Chen, L. C., Sheng, R. L., Li, X. Q., & Li, K. (2013). Colorimetric and highly selective fluorescence “turn-on” detection of Cr3+ by using a simple Schiff base sensor. Chinese Journal of Chemistry, 31, 377–380. DOI: 10.1002/cjoc.201200852.

    Article  CAS  Google Scholar 

  • Yao, L. H., Wang, L., Zhang, J. F., Tang, N., & Wu, J. C.(2012). Ring opening polymerization of L-lactide by an electron-rich Schiff base zinc complex: An activity and kinetic study. Journal of Molecular Catalysis A, 352, 57–62. DOI: 10.1016/j.molcata.2011.10.012.

    Article  CAS  Google Scholar 

  • Yildiz, M., Unver, H., Erdener, D., Kiraz, A., & Iskeleli, N. O. (2009). Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-[(1#-indol-3-yl)methylene]thiosemicarbazone. Journal of Molecular Structure, 919, 227–234. DOI: 10.1016/j.molstruc.2008.09.008.

    Article  CAS  Google Scholar 

  • Yuan, X. J., Wang, R. Y., Mao, C. B., Wu, L., Chu, C. Q., Yao, R., Gao, Z. Y., Wu, B. L., & Zhang, H. Y. (2012). New Pb(II)-selective membrane electrode based on a new Schiff base complex. Inorganic Chemistry Communications, 15, 29–32. DOI: 10.1016/j.inoche.2011.09.031.

    Article  CAS  Google Scholar 

  • Zhang, L., Ni, X. F., Sun, W. L., & Shen, Z. Q. (2008). Polymerization of isoprene catalyzed by neodymium heterocyclic Schiff base complex. Chinese Chemical Letters, 19, 734–738. DOI: 10.1016/j.cclet.2008.03.007.

    Article  CAS  Google Scholar 

  • Zhou, G. P., Hui, Y. H., Wan, N. N., Liu, Q. J., Xie, Z. F., & Wang, J. D. (2012a). Mn(OAc)2/Schiff base as a new efficient catalyst system for the Henry reaction of nitroalkanes with aldehydes. Chinese Chemical Letters, 23, 690–694. DOI: 10.1016/j.cclet.2012.04.018.

    Article  CAS  Google Scholar 

  • Zhou, Y. M., Zhou, H., Zhang, J. L., Zhang, L., & Niu, J. Y. (2012b). Fe3+-selective fluorescent probe based on aminoantipyrine in aqueous solution. Spectrochimica Acta Part A, 98, 14–17. DOI: 10.1016/j.saa.2012.08.025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Pazik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazik, A., Kamińska, B., Skwierawska, A. et al. Synthesis, structural and spectroscopic properties of asymmetric Schiff bases derived from 2,3-diaminopyridine. Chem. Pap. 70, 1204–1217 (2016). https://doi.org/10.1515/chempap-2016-0058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0058

Keywords

Navigation