Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment

Abstract

A suitable analytical method making possible the determination of Gd and other rare-earth elements in samples related to hospital waste water treatment was sought with regard to various aspects of the experiment aimed at monitoring the fate of Gd-based contrast agents in the aquatic environment. The discrepancies and pitfalls of the proposed methodology were considered, resulting in a functional experimental plan. The inductively coupled plasma mass spectrometry (ICP-MS) method was used for the determination of Gd and other rare earth elements in river and hospital waste water and algae Parachlorella kessleri cultured in laboratory experiments. The sample preparation of algae prior to analysis was optimised. The ICP-MS method was validated using a recovery study, sample blanks, reference materials, and comparison with the inductively coupled plasma optical emission spectrometry (ICP-OES) method. The ICP-MS method was confirmed as suitable for monitoring the biosorption/bioaccumulation of Gd in algae and for evaluating the Gd anomaly in hospital waste water and rivers of Eastern Bohemia. In the laboratory experiments, the bioconcentration factors were calculated (all in L kg−1) for algae cultured in inorganic Gd salt (about 1100), in waste water from a magnetic resonance workplace (2300) and in waste water from a hospital waste water treatment plant (4400). A positive Gd anomaly in waters from the river Elbe in the Eastern Bohemia region was found less pronounced in the areas unaffected than in the areas affected by waste waters from hospital.

This is a preview of subscription content, access via your institution.

References

  1. Ahluwalia, S. S., & Goyal, D. (2012). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.

    Article  Google Scholar 

  2. Andersen, R. A. (2005). Algal culturing techniques. London, United Kingdom: Elsevier.

    Google Scholar 

  3. Bau, M., Knappe, A., & Dulski, P. (2006). Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chemie der Erde–Geochemistry, 66, 143–152. DOI: 10.1016/j.chemer.2006.01.002.

    CAS  Google Scholar 

  4. Bau, M., Tepe, N., & Mohwinkel, D. (2013). Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth and Planetary Science Letters, 364, 30–36. DOI: 10.1016/j.epsl.2013.01.002.

    CAS  Article  Google Scholar 

  5. Bednarova, I., Haasova, V., Mikulaskova, H., Nemcova, B., Strakova, L., & Beklova, M. (2012). Comparison of the effect of platinum on producers in aquatic environment. Neuroendocrinology Letters, 33, 107–112.

    CAS  Google Scholar 

  6. Bobrowska-Grzesik, E., Ciba, J., Grossman, A., Kluczka, J., Trojanowska, J., & Zolotajkin, M. (2013). Chemical Elements Compendium, Český Těšín, Czech Republic: 2 THETA.

    Google Scholar 

  7. Depoi, F. D. S., Bentlin, F. R. S., Ferrao, M. F., & Pozebon, D. (2012). Multivariate optimization for cloud point extraction and determination of lanthanides. Analytical Methods, 4, 2809–2814. DOI: 10.1039/c2ay25375e.

    CAS  Article  Google Scholar 

  8. Gale, E. M., Kenton, N., & Caravan, P. (2013). [Gd(CyPic3A) (H2O)2]: a stable, bis(aquated) and high-relaxivity Gd(III) complex. Chemical Communications, 49, 8060–8062. DOI: 10.1039/c3cc44116d.

    CAS  Article  Google Scholar 

  9. Hao, S., Xiaorong, W., Liansheng, W., Lemei, D., Zhong, L., & Yijun, C. (1997). Bioconcentration of rare earth elements lanthanum, gadolinium and yttrium in algae (Chlorella vulgaris beijerinck): influence of chemical species. Chemosphere, 34, 1753–1760. DOI: 10.1016/s0045-6535(97)00031-3.

    Article  Google Scholar 

  10. Hao, S., Xiaorong, W., Qin, W., Liansheng, W., Yijun, C., Lemei, D., Zhong, L., & Mi, C. (1998). The species of spiked rare earth elements in sediment and potential bioavailability to algae (Chlorella Vulgarize Beijerinck). Chemosphere, 36, 329–337. DOI: 10.1016/s0045-6535(97)10013-3.

    CAS  Article  Google Scholar 

  11. Hatje, V., Bruland, K. W., & Flegal, A. R. (2014). Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1® resin: Method development and application in the San Francisco Bay plume. Marine Chemistry, 160, 34–41. DOI: 10.1016/j.marchem.2014.01.006.

    CAS  Article  Google Scholar 

  12. Horník, M., Šuňovská, A., Partelová, D., Pipíška, M., & Augustín, J. (2013). Continuous sorption of synthetic dyes on dried biomass of microalgaa Chlorella pyrenoidosa. Chemical Papers, 67, 254–264. DOI: 10.2478/s11696-012-0235-2.

    Article  Google Scholar 

  13. Chatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175, 117–125. DOI: 10.1016/j.jhazmat.2009.09.136.

    CAS  Article  Google Scholar 

  14. Cho, D. Y., Lee, S. W., Park, S. W., & Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella Vulgaris. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering and Toxicology, A 29, 389–409. DOI: 10.1080/10934529409376043.

    Google Scholar 

  15. Jin, X., Chu, Z., Yan, F., & Zeng, Q. (2009). Effects of lanthanum(III) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Lim-nologica–Ecology and Management of Inland Waters, 39, 86–93. DOI: 10.1016/j.limno.2008.03.002.

    CAS  Article  Google Scholar 

  16. Krejcova, A., Cernohorsky, T., & Pouzar, M. (2012). O-TOF-ICP-MS analysis of rare earth elements, noble elements, uranium and thorium in river-relating species. International Journal of Environmental Analytical Chemistry, 92, 620–635. DOI: 10.1080/03067310903582382.

    CAS  Article  Google Scholar 

  17. Kulaksiz, S., & Bau, M. (2007). Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters, 260, 361–371. DOI: 10.1016/j.epsl.2007.06.016.

    CAS  Article  Google Scholar 

  18. Kulaksiz, S., & Bau, M. (2011a). Rare earth elements in the Rhine River, Germany: First case of anthopogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International, 37, 973–979. DOI: 10.1016/j.envint.2011.02.018.

    CAS  Article  Google Scholar 

  19. Kulaksiz, S., & Bau, M. (2011b). Anthropogenic gadolinium a microcontaminant in tap water used as drinking water in urban areas and megacities. Applied Geochemistry, 26, 1877–1885. DOI: 10.1016/j.apgeochem.2011.06.011.

    CAS  Article  Google Scholar 

  20. Kulaksiz, S., & Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50. DOI: 10.1016/j.epsl.2012.11.033.

    CAS  Article  Google Scholar 

  21. Künnemeyer, J., Terborg, L., Meermann, B., Brauckmann, C., Möller, I., Scheffer, A., & Karst, U. (2009). Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method. Environmental Science & Technology, 43, 2884–2890. DOI: 10.1021/es803278n.

    Article  Google Scholar 

  22. Li, Y., & Hu, B. (2010). Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. Journal of Hazardous Materials, 174, 534–540. DOI: 10.1016/j.jhazmat.2009.09.084.

    CAS  Article  Google Scholar 

  23. Li, R., Ji, Z., Chang, C. H., Dunphy, D. R., Cai, X., Meng, H., Zhang, H., Sun, B., Wang, X., Dong, J., Lin, S., Wang, M., Liao, Y., Brinker, C. J., Nel, A., & Xia, T. (2014). Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 8, 1771–1783. DOI: 10.1021/nn406166n.

    CAS  Article  Google Scholar 

  24. Müller, P., Paces, T., Dulski, P., & Morteani, G. (2002). Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environmental Science and Technology, 36, 2387–2394. DOI: 10.1021/es010235q.

    Article  Google Scholar 

  25. Morteani, G., Möller, P., Fuganti, A., & Paces, T. (2006). Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environmental Geochemistry and Health, 28, 257–264. DOI: 10.1007/s10653-006-9040-6.

    CAS  Article  Google Scholar 

  26. Och, L. M., Muller, B., Wichser, A., Urlich, A., Vologina, E. G., & Sturm, M. (2014). Rare earth elements in the sediments of Lake Baikal. Chemical Geology, 376, 61–75. DOI: 10.1016/j.chemgeo.2014.03.018.

    CAS  Article  Google Scholar 

  27. Piper, D. Z., & Bau, M. (2013). Normalized rare earth elements in water, sediments, and wine: Identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 4, 69–83. DOI: 10.4236/ajac.2013.410a1009.

    Article  Google Scholar 

  28. Rabiet, M., Brissaud, F., Seidel, J. L., Pistre, S., & Elbaz-Poulichet, F. (2009). Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere, 75, 1057–1064. DOI: 10.1016/j.chemosphere.2009.01.036.

    CAS  Article  Google Scholar 

  29. Rao, T. P., & Kala, R. (2004). On-line and off-line preconcentration of trace and ultratrace amounts of lanthanides. Talanta, 63, 949–959. DOI: 10.1016/j.talanta.2004.01.013.

    Article  Google Scholar 

  30. Raut, N. M., Huang, L. S., Aggarwal, S. K., & Lin, K. C. (2003). Determination of lanthanides in rock samples by inductively coupled plasma mass spectrometry using thorium as oxide and hydroxide correction standard. Spectrochimica Acta Part B: Atomic Spectroscopy, 58, 809–822. DOI: 10.1016/s0584-8547(03)00016-8.

    Article  Google Scholar 

  31. Rozemeijer, J., Siderius, C., Verheul, M., & Pomarius, H. (2012). Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium. Hydrology and Earth System Sciences, 16, 2405–2415. DOI: 10.5194/hess-16-2405-2012.

    Article  Google Scholar 

  32. Shams, L., Turner, A., Millward, G. E., & Brown, M. T. (2014). Extra- and intra-cellular accumulation of platinum group elements by the marine microalga, Chlorella stigmatophora. Water Research, 50, 432–440. DOI: 10.1016/j.watres.2013.10.055.

    CAS  Article  Google Scholar 

  33. Telgmann, L., Sperling, M., & Karst, U. (2013). Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review. Analytica Chimica Acta, 764, 1–16. DOI: 10.1016/j.aca.2012.12.007.

    CAS  Article  Google Scholar 

  34. Varga, Z., Katona, R., Stefanka, Z., Wallenius, M., Mayer, K., & Nicholl, A. (2010). Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta, 80, 1744–1749. DOI: 10.1016/j.talanta.2009.10.018.

    CAS  Article  Google Scholar 

  35. Weltje, L., Heidenreich, H., Zhu, W., Wolterbeek, H. T., Korhammer, S., de Goeij, J. J. M., & Markert, B. (2002). Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands. Science of The Total Environment, 286, 191–214. DOI: 10.1016/s0048-9697(01)00978-0.

    CAS  Article  Google Scholar 

  36. Xingye, Y., Daqiang, Y., Hao, S., Xiaorong, W., Lemei, D., Yijun, C., & Mi, C. (1999). Distribution and bioavailability of rare earth elements in aquatic microcosm. Chemosphere, 39, 2443–2450. DOI: 10.1016/s0045-6535(99)00172-1.

    Article  Google Scholar 

  37. Zhu, Y., Itoh, A., Umemura, T., Haraguchi, H., Inagaki, K., & Chiba, K. (2010). Determination of REEs in natural water by ICP-MS with the aid of an automatic column changing system. Journal of Anaytical Atomic Spectrometry, 25, 1253–1258. DOI: 10.1039/c003125a.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Krejčová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bendakovská, L., Krejčová, A., Černohorský, T. et al. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment. Chem. Pap. 70, 1155–1165 (2016). https://doi.org/10.1515/chempap-2016-0057

Download citation

Keywords

  • gadolinium
  • rare-earth elements
  • bioaccumulation
  • gadolinium anomaly
  • inductively coupled plasma mass spectrometry (ICP-MS)
  • inductively coupled plasma optical emission spectrometry (ICP-OES)