Skip to main content

Advertisement

Log in

UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present study reports simultaneous mineralisation and biodetoxification of Ponceau S (3-hydroxy-4-(2-sulfo-4-[4-sulfophenylazo]phenylazo)-2,7-naphthalenedisulfonic acid sodium salt), an azo dye, by UV light assisted oxidation with hydroxyl and sulfate radicals. Metal ion catalysts used in the work were: Fe2+ and Ag+, and the oxidants used were: hydrogen peroxide and S2O82−. Strategies adopted to make the processes environmentally benign and economically viable by achieving maximum mineralisation in the shortest possible time are described. Mineralisation efficiency (Em) of various systems was found to follow the order: Em(Fe2+/H2O2/UV) > Em(Fe2+/S2O82−/UV) > Em(Ag+/H2O2/UV) ≈ Em(Ag+/S2O82−/UV). Thus, Fe2+ and HP are the most suitable metal ion catalyst and oxidant respectively, showing higher efficiency at pH 3 followed by that at pH 6.6. It is possible to enhance the Fe2+/H2O2/UV process electrical energy efficiency by maintaining the concentration of Fe at either 0.05 mM or 0.03 mM and that of the oxidant at 2.5 mM. The bioassay study revealed that the Fe2+/S2O82−/UV process biodetoxification efficiency is higher at pH 3 (93.7 %) followed by that at pH 6.6 (80.1 %) at the concentration of Fe 2+ and S2O82− of 0.03 mM and 2.5 mM, respectively. Thus, not only the concentration of Fe2+, but also the nature of the oxidant and pH play an important role in the biodetoxification process and S2O82− possesses higher biodetoxification efficiency than H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniou, M. G., de la Cruz, A. A., Dionysiou, D. D. (2010). Degradation of microcystin-LR usingsulfate radicals generated through photolysis, thermolysis and e- transfer mechanisms. Applied Catalysis B, 96, 290–298. DOI: 10.1016/j.apcatb.2010.02.013.

    Article  CAS  Google Scholar 

  • Aruoma, O. I., Halliwell, B. V., Dizdaroglu, M. (1989). Iron ion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine ox-idase. The Journal of Biological Chemistry, 264, 13024–13028.

    CAS  Google Scholar 

  • Barrault, J., Abdellaoui, M., Bouchoule, C., Majesté, A., Tatiboüet, J. M., Louloudi, A., Papayannakos, N., Gangas, N. H. (2000). Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays. Applied Catalysis B, 27, L225–L230. DOI: 10.1016/s0926-3373(00)00170-3.

    Article  CAS  Google Scholar 

  • Bautista, P., Mohedano, A. F., Gilarranz, M. A., Casas, J. A., Rodriguez, J. J. (2007). Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials, 143, 128–134. DOI: 10.1016/j.jhazmat.2006.09.004.

    Article  CAS  Google Scholar 

  • Bossmann, S. H., Oliveros, E., Göb, S., Kantor, M., Göppert, A., Lei, L., Yue, P. L., Braun, A. M. (2001). Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fen-ton reaction. Water Science and Technology, 44, 257–262.

    CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (.OH/.O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513. DOI: 10.1063/1.555805.

    Article  CAS  Google Scholar 

  • Durán, A., Monteagudo, J. M., Carnicer, A. (2011). Photo-Fenton mineralization of synthetic apple-juice wastewa-ter. Chemical Engineering Journal, 168, 102–107. DOI: 10.1016/j.cej.2010.12.046.

    Article  Google Scholar 

  • Farr, S. B., D’Ari, R., Touati, D. (1986). Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismu-tase. Proceedings of the National Academy of Sciences, 83, 8268–8272. DOI: 10.1073/pnas.83.21.8268.

    Article  CAS  Google Scholar 

  • Fee, J. A. (1980). Superoxide, superoxide dismutases and oxygen toxicity. In T. G. Spiro (Ed.), Metalion activation of dioxygen (pp. 209–237). New York, NY, USA: Wiley.

    Google Scholar 

  • Gemeay, A. H., Habib, A. F. M., El-Din, M. A. B. (2007). Kinetics and mechanism of the uncatalyzed and Ag(I)-catalyzed oxidative decolorization of sunset yellow and ponceau 4R with peroxydisulphate. Dyes and Pigments, 74, 458–463. DOI: 10.1016/j.dyepig.2006.03.006.

    Article  CAS  Google Scholar 

  • González-Flecha, B., Demple, B. (1997). Homeostatic regulation of intracellular hydrogen peroxide concentration in aer-obically growing Escherichia coli. Journal of Bacteriology, 179, 382–388.

    Article  Google Scholar 

  • Hug, S. J., Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37, 2734–2742. DOI: 10.1021/es026208x.

    Article  CAS  Google Scholar 

  • Jeong, J. S., Yoon, J. Y. (2005). pH effect on OH radical production in photo/ferrioxalate system. Water Research, 39, 2893–2900. DOI: 10.1016/j.watres.2005.05.014.

    Article  CAS  Google Scholar 

  • Kang, N. G., Lee, D. S., & Yoon, J. Y. (2002). Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere, 47, 915–924. DOI: 10.1016/s0045-6535(02) 00067-x.

    Article  CAS  Google Scholar 

  • Keyer, K., Imlay, J. A. (1996). Superoxides accelerates DNA damage by elevating free-iron levels. Proceeding of the National Academy of Sciences, 93, 13635–13640.

    Article  CAS  Google Scholar 

  • Khan, J. A., He, X. X., Khan, H. M., Shah, N. S., Dionysiou, D. D. (2013). Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV//Fe2+ and UV//Fe2+ processes: A comparative study. Chemical Engineering Journal, 218, 376–383. DOI: 10.1016/j.cej.2012.12.055.

    Article  CAS  Google Scholar 

  • Kwan, C. Y., & Chu, W. (2007). The role of organic lig-ands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid. Chemosphere, 67, 1601–1611. DOI: 10.1016/j.chemosphere.2006.11.052.

    Article  CAS  Google Scholar 

  • Lau, T. K., Chu, W., Graham, N. J. D. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O28-: Study of reaction mechanisms via dimerization and mineralization. Environmental Science & Technology, 41, 613–619. DOI: 10.1021/es061395a.

    Article  CAS  Google Scholar 

  • Lesko, S. A., Lorentzen, R. J., Ts’o, P. O. P. (1980). Role of superoxide in deoxyribonucleic acid strand scission. Biochemistry, 19, 3023–3028. DOI: 10.1021/bi00554a029.

    Article  CAS  Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., Sperry, K. L. (2003). Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, 12, 207–228. DOI: 10.1080/713610970.

    Article  CAS  Google Scholar 

  • Neamtu, M., Yediler, A., Siminiceanu, I., Kettrup, A. (2003). Oxidation of commercial reactive dyes aqueous solutions by the photo-Fenton and Fenton-like processes. Journal of Photochemistry and Photobiology A, 161, 87–93. DOI: 10.1016/s1010-6030(03)00270-3.

    Article  CAS  Google Scholar 

  • Neyens, E., Baeyens, J. (2003). A review of classic Fen-ton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98, 33–50. DOI: 10.1016/s0304-3894(02)00282-0.

    Article  CAS  Google Scholar 

  • Pang, S. Y., Jiang, J., Ma, J. (2011). Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: Evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environmental Science & Technology, 45, 307–312. DOI: 10.1021/es102401d.

    Article  CAS  Google Scholar 

  • Pignatello, J. J. (1992). Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science & Technology, 26, 944–951. DOI: 10.1021/es00029a012.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84. DOI: 10.1080/10643380500326564.

    Article  CAS  Google Scholar 

  • Pujara, K., Kamble, S. P., Pangarkar, V. G. (2007). Photo-catalytic degradation of phenol-4-sulfonic acid using an artificial UV/TiO2 system in a slurry bubble column reactor. Industrial & Engineering Chemistry Research, 46, 4257–4264. DOI: 10.1021/ie061484w.

    Article  CAS  Google Scholar 

  • Rasoulifard, M. H., Mohammadi, S. M. M. D., Heidari, A., Farhangnia, E. (2011). Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution. Turkish Journal of Engineering and Environmental Sciences, 36, 73–80. DOI: 10.3906/muh-1006-54.

    Google Scholar 

  • Sahoo, M. K. (2011). Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives. Research Journal of Chemistry and Environment, 15, 96–112.

    Google Scholar 

  • Sahoo, M. K., Marbaniang, M., Sinha, B., Naik, D. B., Sha-ran, R. N. (2012a). UVC induced TOC removal studies of Ponceau S in the presence of oxidants: Evaluation of electrical energy efficiency and assessment of biotoxicity of the treated solutions by Escherichia coli colony forming unit assay. Chemical Engineering Journal, 213, 142–149. DOI: 10.1016/j.cej.2012.10.002.

    Article  CAS  Google Scholar 

  • Sahoo, M. K., Sinha, B., Marbaniang, M., Naik, D. B., Sha-ran, R. N. (2012b). Mineralization of Calcon by UV/oxidant systems and assessment of biotoxicity of the treated solutions by E. coli colony forming unit assay. Chemical Engineering Journal, 181–182, 206–214. DOI: 10.1016/j.cej.2011.11.063.

    Article  Google Scholar 

  • Sahoo, M. K., Sayoo, L. (2014). Removal of Acid blue 29 in aqueous solution by Fenton and Fenton-like processes. Desalination and Water Treatment, 52, 3411–3420. DOI: 10.1080/19443994.2013.797672.

    Article  CAS  Google Scholar 

  • Sahoo, M. K., Marbaniang, M., Sinha, B., & Sharan, R. N. (2014). Fenton and Fenton-like processes for the mineralization of Ponceau S in aqueous solution: Assessment of eco-toxicological effect of post treated solutions. Seper-ation and Purification Technology, 124, 155–162. DOI: 10.1016/j.seppur.2014.01.021.

    Article  CAS  Google Scholar 

  • Seaver, L. C., & Imlay, J. A. (2001). Hydrogen peroxide fluxes and compartmentalization inside growing Es-cherichia coli. Journal of Bacteriology, 183, 7182–7189. DOI: 10.1128/jb.183.24.7182-7189.2001.

    Article  CAS  Google Scholar 

  • Touati, D., Jacques, M., Tardat, B., Bouchard, L., Despied, S. (1995). Lethal oxidative damage and mutagenesis are generated by iron in delta fur mutants of Escherichia coli: Protective role of superoxide dismutase. Journal of Bacteriology, 177, 2305–2314.

    Article  CAS  Google Scholar 

  • Trovó, A. G., Nogueira, R. F. P., Agüera, A., Fernandez-Alba, A. R., Malato, S. (2011). Degradation of the antibiotic amoxicillin by photo-Fenton process-chemical and toxico-logical assessment. Water Research, 45, 1394–1402. DOI: 10.1016/j.watres.2010.10.029.

    Article  Google Scholar 

  • Zepp, R. G., Faust, B. C., & Hoigne, J. (1992). Hydroxyl radical formation in aqueous solution (pH 3–8) of Iron(II) with hydrogen peroxide: The photo-Fenton reaction. Environmental Science & Technology, 26, 313–319. DOI: 10.1021/es00026a011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir K. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, M.K., Marbaniang, M. & Sharan, R.N. UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals. Chem. Pap. 70, 1066–1077 (2016). https://doi.org/10.1515/chempap-2016-0050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0050

Keywords

Navigation