Skip to main content
Log in

Methodology considering surface roughness in UV water disinfection reactors

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Water disinfection making use of an ultraviolet (UV) reactor is an attractive procedure because it does not produce any by-products. In this work, the effects of pipe roughness on the performance of a closed-conduit water disinfection UV reactor were investigated. In order to incorporate the surface roughness effects, a simple, stable, highly accurate model, better than any iterative approximation, was adopted in the numerical simulations. The analysis was carried out on the basis of two performance indicators: reduction equivalent dose (RED) and system dose distribution. The analysis was performed using a commercial computational fluid dynamics (CFD) tool (ANSYS Fluent). The fluence rate within the UV reactor was calculated using UVCalc3D. The pipe surface roughness resulted in longer pathogen residence times and higher dose distribution among the pathogens. The effect of pipe surface roughness on RED depends on the Reynolds number and relative roughness. Pipe surface roughness plays an important role because UV reactors for water disinfection operate at moderate Reynolds numbers. In addition, the positioning of the UV lamp in the reactor plays an important role in determining the RED of the reactor. Search criteria for lamp-positioning are also proposed in the current work. The proposed CFD methodology can be used to analyse the performance of closed-conduit reactors for water disinfection by UV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahsan, M. (2014). Numerical analysis of friction factor for a fully developed turbulent flow using ks turbulence model with enhanced wall treatment. Beni-Suef University Journal of Basic and Applied Sciences, 3, 269–277. DOI: 10.1016/j.bjbas.2014.12.001.

    Article  Google Scholar 

  • ANSYS (2015). ANSYS®Fluent, Academic research, release 15.0. [computer software]. Canonsburg, PA, USA: ANSYS Inc.

    Google Scholar 

  • Antonia, R. A., & Krogstad, P. A. (2000). Effect of different surface roughnesses on a turbulent boundary layer. Journal of the Brazilian Society of Mechanical Sciences, 22(1), 1–15. DOI: 10.1590/s0100–73862000000100001.

    Article  Google Scholar 

  • Asker, M., Turgut, O. E., & Coban, M. T. (2014). A review of non iterative friction factor correlations for the calculation of pressure drop in pipes. Bitlis Eren University Journal of Science and Technology, 4, 1–8.

    Google Scholar 

  • Bolton, J. R. (2000). Calculation of ultraviolet fluence rate distributions in an annular reactor: significance of refraction and reflection. Water Research, 34, 3315–3324. DOI: 10.1016/s0043–1354(00)00087–7.

    Article  CAS  Google Scholar 

  • Brkic, D. (2011). Review of explicit approximations to the Cole-brook relation for flow friction. Journal ofPetroleum Science & Engineering, 77, 34–48. DOI: 10.1016/j.petrol.2011.02.006.

    Article  CAS  Google Scholar 

  • Brkic, D. (2012). Can pipes be actually really that smooth? International Journal of Refrigeration, 35, 209–215. DOI: 10.1016/j.ijrefrig.2011.09.012.

    Article  Google Scholar 

  • Castro, I. P. (2009). Turbulent flow over rough walls. In B. Eckhardt (Ed.), Advances in turbulence XII (Springer Proceedings in Physics, Vol. 132, pp. 381–388). Berlin, Germany: Springer. DOI: 10.1007/978–3–642–03085–7_92.

    Article  Google Scholar 

  • Chen, Y. P., Fu, P. P., Zhang, C. B., & Shi, M. H. (2010). Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures. International Journal ofHeat and Fluid Flow, 31, 622–629. DOI: 10.1016/j.ijheatfluidflow.2010.02.017.

    Article  Google Scholar 

  • Chen, J. Y., Deng, B. Q., & Kim, C. N. (2011). Computational fluid dynamics (CFD) modeling of UV disinfection in a closed-conduit reactor. Chemical Engineering Science, 66, 4983–4990. DOI: 10.1016/j.ces.2011.06.043.

    Article  CAS  Google Scholar 

  • Chiu, K., Lyn, D., Savoye, P., & Blatchley, E., III. (1999). Integrated UV disinfection model based on particle tracking. Journal of Environmental Engineering, 125, 7–16. DOI: 10.1061/(asce)0733–9372(1999)125:1(7).

    Article  CAS  Google Scholar 

  • Clauser, F. H. (1954). Turbulent boundary layers in adverse pressure gradients. Journal of the Aeronautical Sciences, 21, 91–108.

    Article  Google Scholar 

  • Colebrook, C. F. (1939). Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. Journal of the Institution of Civil Engineers, 11(4), 133–156. DOI: 10.1680/ijoti.1939.13150.

    Article  Google Scholar 

  • Concha, F. (2008). Settling velocities of particulate systems 15: Velocities in turbulent Newtonian flows. International Journal of Mineral Processing, 88, 89–93. DOI: 10.1016/j.minpro.2008.06.008.

    Article  CAS  Google Scholar 

  • Ducoste, J. J., Liu, D., & Linden, K. (2005). Alternative approaches to modeling fluence distribution and microbial inactivation in ultraviolet reactors: Lagrangian versus Eulerian. Journal of Environmental Engineering, 131, 1393–1403. DOI: 10.1061/(asce)0733–9372(2005)131:10(1393).

    Article  CAS  Google Scholar 

  • Farshad, F., Rieke, H., & Garber, J. (2001). New developments in surface roughness measurements, characterization, and modeling fluid flow in pipe. Journal of Petroleum Science and Engineering, 29, 139–150. DOI: 10.1016/s0920-4105(01)00096–1.

    Article  CAS  Google Scholar 

  • Gamrat, G., Favre-Marinet, M., & Le Person, S. (2009). Modelling of roughness effects on heat transfer in thermally fully-developed laminar flows through microchannels. International Journal of Thermal Sciences, 48, 2203–2214. DOI: 10.1016/j.ijthermalsci.2009.04.006.

    Article  CAS  Google Scholar 

  • Graham, D. I., & Moyeed, R. A. (2002). How many particles for my Lagrangian simulations? Powder Technology, 125, 179–186. DOI: 10.1016/s0032–5910(01)00504–6.

    Article  CAS  Google Scholar 

  • Hama, F. R. (1954). Boundary-layer characteristics for smooth and rough surfaces. New York, NY, USA: Society for Naval Architects and Marine Engineers.

    Google Scholar 

  • Jeng, Y. R. (1990). Experimental study of the effects of surface roughness on friction. Tribology Transactions, 33, 402–410. DOI: 10.1080/10402009008981970.

    Article  Google Scholar 

  • Ji, Y., Yuan, K., & Chung, J. N. (2006). Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. International Journal of Heat and Mass Transfer, 49, 1329–1339. DOI: 10.1016/j.ijheatmasstransfer.2005.10.011.

    Article  CAS  Google Scholar 

  • Kandlikar, S. G., Schmitt, D., Carrano, A. L., & Taylor, J. B. (2005). Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Physics of Fluids, 17(10), 100–606. DOI: 10.1063/1.1896985.

    Article  Google Scholar 

  • Krogstad, P. A. (1991). Modification of the van Driest damping function to include the effects of surface roughness. AIAA Journal, 29, 888–894. DOI: 10.2514/3.10675.

    Article  Google Scholar 

  • Krogstad, P. A., & Antonia, R. A. (1999). Surface roughness effects in turbulent boundary layers. Experiments in Fluids, 27, 450–460. DOI: 10.1007/s003480050370.

    Article  Google Scholar 

  • Kumar, S., & Saini, R. P. (2009). CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable Energy, 34, 1285–1291. DOI: 10.1016/j.renene.2008.09.015.

    Article  Google Scholar 

  • Li, M. K., Qiang, Z. M., Li, T. G., Bolton, J. R., & Liu, C. L. (2011). In situ measurement of UV fluence rate distribution by use of a micro fluorescent silica detector. Environmental Science & Technology, 45, 3034–3039. DOI: 10.1021/es103796v.

    Article  CAS  Google Scholar 

  • Liu, D., Ducoste, J., Jin, S. S., & Linden, K. (2004). Evaluation of alternative fluence rate distribution models. Aqua, 53, 391–408.

    Google Scholar 

  • Liu, D., Wu, C., Linden, K., & Ducoste, J. (2007). Numerical simulation of UV disinfection reactors: Evaluation of alternative turbulence models. Applied Mathematical Modelling, 31, 1753–1769. DOI: 10.1016/j.apm.2006.06.004.

    Article  Google Scholar 

  • Moody, L. F. (1944). Friction factors for pipe flow. Transactions of the ASME, 66, 671–684.

    Google Scholar 

  • Munoz, A., Craik, S., & Kresta, S. (2007). Computational fluid dynamics for predicting performance of ultraviolet disinfection — sensitivity to particle tracking inputs. Journal of the Environmental Engineering and Science, 6, 285–301. DOI: 10.1139/s06–045.

    Article  CAS  Google Scholar 

  • Pailhas, G., Touvet, Y., & Aupoix, B. (2008). Effects of Reynolds number and adverse pressure gradient on a turbulent boundary layer developing on a rough surface. Journal of Turbulence, 9, N43. DOI: 10.1080/14685240802562020.

  • Qasim, S. R. (1999). Wastewater treatment plants: Planning, design and operation (2nd ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Qualls, R. G., & Johnson, J. D. (1985). Modeling and efficiency of ultraviolet disinfection systems. Water Research, 19, 1039–1046. DOI: 10.1016/0043–1354(85)90374–4.

    Article  CAS  Google Scholar 

  • Rao, A. R., & Kumar, B. (2009). Transition of turbulent pipe flow. Journal of Hydraulic Research, 47, 529–533. DOI: 10.1080/00221686.2009.9522029.

    Article  Google Scholar 

  • Saleh, O. A. B. (2005). Fully developed turbulent smooth and rough channel and pipe flows. PhD thesis, University of Erlangen-Nuremberg, Erlangen, Germany.

    Google Scholar 

  • Schlichting, H., & Gersten, K. (2000). Boundary-layer theory. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Schultz, M. P., & Flack, K. A. (2009). Turbulent boundary layers on a systematically varied rough wall. Physics of Fluids, 21(1), 015–104. DOI: 10.1063/1.3059630.

    Article  Google Scholar 

  • Scibilia, M. F. (2000). Heat transfer in a forced wall jet on a heated rough surface. Journal of Thermal Science, 9, 85–92. DOI: 10.1007/s11630–000–0048–4.

    Article  CAS  Google Scholar 

  • Sonnad, J. R., & Goudar, C. T. (2004). Constraints for using Lambert W function-based explicit Colebrook—White equation. Journal of Hydraulic Engineering, 130, 929–931. DOI: 10.1061/(asce)0733–9429(2004)130:9(929).

    Article  Google Scholar 

  • Sonnad, J. R., & Goudar, C. T. (2006). Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook—White equation. Journal of Hydraulic Engineering, 132, 863–867. DOI: 10.1061/(asce)0733-9429(2006)132:8(863).

    Article  Google Scholar 

  • Sonnad, J. R., & Goudar, C. T. (2007). Explicit reformulation of the Colebrook—White equation for turbulent flow friction factor calculation. Industrial & Engineering Chemistry Research, 46, 2593–2600. DOI: 10.1021/ie0340241.

    Article  CAS  Google Scholar 

  • Taylor, J. B., Carrano, A. L., & Kandlikar, S. G. (2006). Characterization of the effect of surface roughness and texture on fluid flow—past, present, and future. International Journal of Thermal Sciences, 45, 962–968. DOI: 10.1016/j.ijthermalsci.2006.01.004.

    Article  CAS  Google Scholar 

  • Tournier, A., Deglise, X., Andre, J. C., & Niclause, M. (1982). Experimental determination of the light distribution in a photochemical reactor: Influence of the concentration of an absorbing substance on this profile. AIChE Journal, 28, 156–166. DOI: 10.1002/aic.690280123.

    Article  CAS  Google Scholar 

  • Townsend, A. A. R. (1980). The structure of turbulent shear flow (2nd ed.) Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • USEPA (2006). Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. Washington, DC, USA: US Environmental Protection Agency.

    Google Scholar 

  • Watson, H. E. (1908). A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. The Journal of Hygiene (London), 8, 536–542.

    Article  CAS  Google Scholar 

  • White, F. M. (1979). Fluid mechanics. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Xu, C., Zhao, X. S., & Rangaiah, G. (2013). Performance analysis of ultraviolet water disinfection reactors using computational fluid dynamics simulation. Chemical Engineering Journal, 221, 398–406. DOI: 10.1016/j.cej.2013.01.108.

    Article  CAS  Google Scholar 

  • Xu, C., Rangaiah, G. P., & Zhao, X. S. (2015). A computational study of the effect of lamp arrangements on the performance of ultraviolet water disinfection reactors. Chemical Engineering Science, 122, 299–306. DOI: 10.1016/j.ces.2014.09.041.

    Article  CAS  Google Scholar 

  • Yildirim, G. (2009). Computer-based analysis of explicit approximations to the implicit Colebrook-White equation in turbulent flow friction factor calculation. Advances in Engineering Software, 40, 1183–1190. DOI: 10.1016/j.advengsoft. 2009.04.004.

    Article  Google Scholar 

  • Zhang, C. B., Chen, Y. P., & Shi, M. H. (2010). Effects of roughness elements on laminar flow and heat transfer in microchannels. Chemical Engineering and Processing: Process Intensification, 49, 1188–1192. DOI: 10.1016/j.cep.2010.08.022.

    Article  CAS  Google Scholar 

  • Zidan, A. R. A. (2015). A review of friction formulae in open channel flow. In Proceedings of the 18th International Water Technology Conference, IWTC18, March 12–14, 2015 (pp. 322–335). Sharm El-Sheikh, Egypt: International Water Technology Association.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Soo Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, T., Cho, JS. Methodology considering surface roughness in UV water disinfection reactors. Chem. Pap. 70, 777–792 (2016). https://doi.org/10.1515/chempap-2016-0020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0020

Keywords

Navigation