Chitosan sponge matrices with β-cyclodextrin for berberine loading

Abstract

Biocompatible polymer sponge materials based on biodegradable natural polymer chitosan, which can be loaded with clinician-selected drugs are still in the centre of interest for their wide use in clinical practice. This study shows possibilities of the technology which combines simple addition of β-cyclodextrin (β-CD), with dialdehyde starch (DAS) as a cross-linking agent of chitosan, to chitosan solutions for subsequent formation of sponge matrix. The advantage of such system is in avoiding chemical modifications and working only with natural substances. It is shown that, in matrix formation during lyophilisation, β-CD molecules tend to accumulate on the surface of the porous matrix structure. This was confirmed by a study of the known inclusion complex of β-CD and salicylic acid (SA) in heptane. The same study was applied to berberine (BER) which can also form an inclusion complex with β-CD in a water solution. Moreover, adsorption of drugs on the surface of the porous structure has to be also taken into account. This enables the production of sponge topical medical preparations useful for sustained release of BER.

This is a preview of subscription content, access via your institution.

References

  1. Arun, R., Ashok Kumar, C. K., & Sravanthi, V. V. N. S. S. (2008). Cyclodextrins as drug carrier molecule: A review. Scientia Pharmaceutica, 76, 567–598. DOI: 10.3797/scipharm. 0808-05.

    Article  Google Scholar 

  2. Belyakova, L. A., Varvarin, A. M., Lyashenko, D. Y., Khora, O. V., & Oranskaya, E. I. (2007). Complexation in a β-cyclodextrin—salicylic acid system. Colloid Journal, 69, 546–551. DOI: 10.1134/s1061933x0705002x.

    CAS  Article  Google Scholar 

  3. Felt, O., Buri, P., & Gurny, R. (1998). Chitosan: A unique polysaccharide for drug delivery. Drug Development and Industrial Pharmacy, 24, 979–993. DOI: 10.3109/036390498090 89942.

    CAS  Article  Google Scholar 

  4. Hirano, S., Seino, H., Akiyama, Y., & Nonaka, I. (1990). Chitosan: A biocompatible material for oral and intravenous administrations. In C. G. Gebelein, & R. L. Dunn (Eds.), Progress in biomedical polymers (pp. 283–290). New York, NY, USA: Springer. DOI: 10.1007/978-1-4899-0768-4_28.

    Chapter  Google Scholar 

  5. Ikeda, T., Ikeda, K., Yamamoto, K., Ishizaki, H., Yoshizawa, Y., Yanagiguchi, K., Yamada, S., & Hayashi, Y. (2014). Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BioMed Research International, 2014, article ID 786892. DOI: 10.1155/2014/786892.

  6. Illum, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research, 15, 1326–1331. DOI: 10.1023/a:1011929016601.

    CAS  Article  Google Scholar 

  7. Knapczyk, J. (1993). Excipient ability of chitosan for direct tableting. International Journal of Pharmaceutics, 89, 1–7. DOI: 10.1016/0378-5173(93)90301-u.

    CAS  Article  Google Scholar 

  8. Ko, J. A., Park, H. J., Hwang, S. J., Park, J. B., & Lee, J. S. (2002). Preparation and characterization of chitosan microparticles intended for controlled drug delivery. International Journal of Pharmaceutics, 249, 165–174. DOI: 10.1016/s0378-5173(02)00487-8.

    CAS  Article  Google Scholar 

  9. Kumbar, S. G., Kulkarni, A. R., & Aminabhavi, T. M. (2002). Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: Effect of crosslinking agent. Journal of Microencapsulation, 19, 173–180. DOI: 10.1080/026520401100 65422.

    CAS  Article  Google Scholar 

  10. Li, N., & Xu, L. (2010). Thermal analysis of β-cyclodextrin/berberine chloride inclusion compounds. Thermochimica Acta, 499, 166–170. DOI: 10.1016/j.tca.2009.10.014.

    CAS  Article  Google Scholar 

  11. Mi, F. L., Shyu, S. S., Wu, Y. B., Lee, S. T., Shyong, J. Y., & Huang, R. N. (2001a). Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22, 165–173. DOI: 10.1016/s0142-9612(00)00167-8.

    CAS  Article  Google Scholar 

  12. Mi, F. L., Tan, Y. C., Liang, H. C., Huang, R. N., & Sung, H. W. (2001b). In vitro evaluation of a chitosan membrane crosslinked with genipin. Journal of Biomaterials Science, Polymer Edition, 12, 835–850. DOI: 10.1163/156856201753113 051.

    CAS  Article  Google Scholar 

  13. Mi, F. L., Wu, Y. B., Shyu, S. S., Schoung, J. Y., Huang, Y. B., Tsai, Y. H., & Hao, J. Y. (2002). Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Journal of Biomedical Materials Research, Part A, 59, 438–449. DOI: 10.1002/jbm.1260.

    CAS  Article  Google Scholar 

  14. Noel, S. P., Courtney, H. S., Bumgardner, J. D., & Haggard, W. O. (2010). Chitosan sponges to locally deliver amikacin and vancomycin: A pilot in vitro evaluation. Clinical Orthopaedics and Related Research, 468, 2074–2080. DOI: 10.1007/s11999-010-1324-6.

    Article  Google Scholar 

  15. Patel, V. R., & Amiji, M. M. (1996). Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharmaceutical Research, 13, 588–593. DOI: 10.1023/a:1016054306 763.

    CAS  Article  Google Scholar 

  16. Pavlath, A. E., Wong, D. W. S., & Robertson, G. H. (1996). Chitosan (preparation, structure, and properties). In J. C. Salamone (Ed.), Polymeric materials encyclopedia (pp. 12301234). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  17. Piyakulawat, P., Praphairaksit, N., Chantarasiri, N., & Muangsin, N. (2007). Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS Pharm Sci Tech, 8, article 97, E1–E11. DOI: 10.1208/pt0804097.

    Article  Google Scholar 

  18. Prabaharan, M., & Mano, J. F. (2006). Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydrate Polymers, 63, 153–166. DOI: 10.1016/j. carbpol.2005.08.051.

    CAS  Article  Google Scholar 

  19. Ravi Kumar, M. N. V., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104, 60176084. DOI: 10.1021/cr030441b.

    Google Scholar 

  20. Schiffman, J. D., & Schauer, C. L. (2007). Cross-linking chitosan nanofibers. Biomacromolecules, 8, 594–601. DOI: 10.1021/bm060804s.

    CAS  Article  Google Scholar 

  21. Serrero, A., Trombotto, S., Cassagnau, P., Bayon, Y., Gravagna, P., Montanari, S., & David, L. (2010). Polysaccharide gels based on chitosan and modified starch: Structural characterization and linear viscoelastic behavior. Biomacromolecules, 11, 1534–1543. DOI: 10.1021/bm1001813.

    CAS  Article  Google Scholar 

  22. Shigemasa, Y., & Minami, S. (1996). Applications of chitin and chitosan for biomaterials. Biotechnology and Genetic Engineering Reviews, 13, 383–420. DOI: 10.1080/02648725.1996. 10647935.

    CAS  Article  Google Scholar 

  23. Tang, R., Du, Y., & Fan, L. (2003). Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. Journal of Polymer Science: Part B: Polymer Physics, 41, 993–997. DOI: 10.1002/polb.10405.

    CAS  Article  Google Scholar 

  24. Tual, C., Espuche, E., Escoubes, M., & Domard, A. (2000). Transport properties of chitosan membranes: Influence of crosslinking. Journal of Polymer Science: Part B: Polymer Physics, 38, 1521–1529. DOI: 10.1002/(SICI)1099-0488(20000601)38:11< 1521::AID-POLB120>3.0.CO;2-#.

    CAS  Article  Google Scholar 

  25. Vodna, L., Bubenikova, S., & Bakos, D. (2007). Chitosan based hydrogel microspheres as drug carriers. Macromolecular Bioscience, 7, 629–634. DOI: 10.1002/mabi.200600290.

    CAS  Article  Google Scholar 

  26. Yu, J. S., Wei, F. D., Gao, W., & Zhao, C. C. (2002). Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 249–256. DOI: 10.1016/s1386-1425(01)00536-4.

    Article  Google Scholar 

  27. Zohuriaan-Mehr, M. J. (2005). Advances in chitin and chitosan modification through graft copolymerization: A comprehensive review. Iranian Polymer Journal, 14, 235–265.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dušan Bakoš.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hnátová, M., Bakoš, D., ČCernáková, L. et al. Chitosan sponge matrices with β-cyclodextrin for berberine loading. Chem. Pap. 70, 1262–1267 (2016). https://doi.org/10.1515/chempap-2016-0015

Download citation

Keywords

  • chitosan sponge matrix
  • cyclodextrin
  • surface properties
  • berberine release
  • lyophilisation