Skip to main content
Log in

Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Phyllanthus amarus is known as a healing herb which has traditionally been used in the treatment of various diseases such as hepatitis, diabetes and cancer. The extraction parameters have great effects on the extraction efficiency of bioactive compounds and pharmacological activity of the extracts. This study sought to optimise the microwave-assisted extraction parameters for phenolic compounds-enriched extracts and antioxidant capacity from P. amarus using response surface methodology (RSM). The results showed that the optimal microwave-assisted extraction parameters were an extraction time of 30 min, an irradiation time of 14 s min−1 and a ratio of solvent to sample of 150 mL g−1. The total phenolic content, phenolic extraction efficiency, saponin content, 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity, 2,2-diphenyl-1-picryl-hydrazil (DPPH) radical scavenging capacity and ferric reducing antioxidant power of the P. amarus achieved under these optimal parameters were 87.3 mg of gallic acid equivalents (GAE) per gram of dried sample, 69.7 %, 134.9 mg of escin equivalents (EE) per gram of dried sample, 997.8, 604.7 and 437.3 all in mg of trolox equivalents (TE) per gram of dried sample, respectively, which were not significantly different from the predicted values (86.9 mg of GAE per gram of dried sample, 67.3 %, 123.5 mg of EE per gram of dried sample, 1013.3 mg of TE per gram of dried sample, 530.6 mg of TE per gram of dried sample and 423.5 mg of TE per gram of dried sample, respectively). Accordingly, the optimal microwave-assisted extraction parameters of 30 min, 14 s min−1 and 150 mL g−1 are recommended for the extraction of enriched phenolics from P. amarus for potential application in the nutraceutical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Association of Official Analytical Chemists (1998). Official methods of analysis (16th ed.). Washington, DC, USA: AOAC.

    Google Scholar 

  • Bai, X. L., Yue, T. L., Yuan, Y. H., & Zhang, H. W. (2010). Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. Journal of Separation Science, 33, 3751–3758. DOI: 10.1002/jssc.201000430.

    Article  CAS  Google Scholar 

  • Bhuyan, D. J., Vuong, Q. V., Chalmers, A. C., Altena, I. A. V., Bowyer, M. C., & Scarlett, C. J. (2015). Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Industrial Crops and Products, 69, 290–299. DOI: 10.1016/j.indcrop.2015.02.044.

    Article  CAS  Google Scholar 

  • Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: a review. Food Research International, 59, 16–40. DOI: 10.1016/j.foodres.2014.01.057.

    Article  CAS  Google Scholar 

  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585–595. DOI: 10.1016/j.foodchem.2014.06.066.

    Article  CAS  Google Scholar 

  • Hari Kuma, K. B., & Kuttan, R. (2004). Protective effect of an extract of Phyllanthus amarus against radiation-induced damage in mice. Journal of Radiation Research, 45, 133–139. DOI: 10.1269/jrr.45.133.

    Article  Google Scholar 

  • Kha, T. C., Nguyen, M. H., Phan, D. T., Roach, P. D., & Stathopoulos, C. E. (2013). Optimisation of microwave- assisted extraction of Gac oil at different hydraulic pressure, microwave and steaming conditions. International Journal of Food Science and Technology, 48, 1436–1444. DOI: 10.1111/ijfs.12109.

    Article  CAS  Google Scholar 

  • Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014a). Microencapsulation of Gac oil by spray drying: optimization of wall material concentration and oil load using response surface methodology. Drying Technology, 32, 385–397. DOI: 10.1080/07373937.2013.829854.

    Article  CAS  Google Scholar 

  • Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014b). Microencapsulation of Gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technology, 264, 298–309. DOI: 10.1016/j.powtec.2014.05.053.

    Article  CAS  Google Scholar 

  • Kwon, J. H., Belanger, J. M. R., & Pare, J. R. J. (2003). Optimization of microwave-assisted extraction (MAP) for Ginseng components by response surface methodology. Journal of Agricultural and Food Chemistry, 51, 1807–1810. DOI: 10.1021/jf026068a.

    Article  CAS  Google Scholar 

  • Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT — Food Science and Technology, 40, 1664–1669. DOI: 10.1016/j.lwt.2006.12.013.

    Article  CAS  Google Scholar 

  • Londhe, J. S., Devasagayam, T. P. A., Foo, L. Y., & Ghaskadbi, S. S. (2008). Antioxidant activity of some polyphenol constituents of the medicinal plant Phyllanthus amarus Linn. RedoxReport, 13, 199–207. DOI: 10.1179/135100008x308984.

    CAS  Google Scholar 

  • Londhe, J. S., Devasagayam, T. P. A., Foo, L. Y., Shastry, P., & Ghaskadbi, S. S. (2012). Geraniin and amariin, ellagitannins from Phyllanthus amarus, protect liver cells against ethanol induced cytotoxicity. Fitoterapia, 83, 1562–1568. DOI: 10.1016/j.fitote.2012.09.003.

    Article  CAS  Google Scholar 

  • Maity, S., Chatterjee, S., Variyar, P. S., Sharma, A., Adhikari, S., & Mazumder, S. (2013). Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root. Journal of Agricultural and Food Chemistry, 61, 3443–3450. DOI: 10.1021/jf3046686.

    Article  CAS  Google Scholar 

  • Nguyen, V. T. (2014). Mass proportion, proximate composition and effects of solvents and extraction parameters on pigment yield from cacao pod shell (Theobroma cacao L.). Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.12360. (in press)

    Google Scholar 

  • Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015a). Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology, 33, 1006–1017. DOI: 10.1080/07373937.2015.1013197.

    Article  CAS  Google Scholar 

  • Nguyen, V. T., Pham, H. N. T., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015b). Evaluating the influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity from Phyllanthus amarus. Chemical Papers. (in press)

    Google Scholar 

  • Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., van Altena, I. A., & Scarlett, C. J. (2015c). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192–200. DOI: 10.1016/j.indcrop.2015.01.051.

    Article  CAS  Google Scholar 

  • Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015d). Microware-assisted extraction for saponins and antioxidant capacity from Xao tam phan (Paramignya trimera) root. Journal of Food Processing and Preservation. (accepted)

    Google Scholar 

  • Osbourn, A., Goss, R. J. M., & Field, R. A. (2011). The saponins — polar isoprenoids with important and diverse biological activities. Natural Product Report, 28, 1261–1268. DOI: 10.1039/c1np00015b.

    Article  CAS  Google Scholar 

  • Patel, J. R., Tripathi, P., Sharma, V., Chauhana, N. S., & Dixit, V. K. (2011). Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. Journal of Ethnopharmarcology, 138, 286–313. DOI: 10.1016/j.jep.2011. 09.040.

    Article  CAS  Google Scholar 

  • Poh Hwa, T., Yoke Kqueen, C., Indu Bala, J., & Son, R. (2011). Bioprotective properties of three Malaysia Phyllanthus species: an investigation of the antioxidant and antimicrobial activities. International Food Research Journal, 18, 887–893.

    CAS  Google Scholar 

  • Roengrit, T., Wannanon, P., Prasertsri, P., Kanpetta, Y., Sripanidkulchai, B. O., & Leelayuwat, N. (2014). Antioxidant and anti-nociceptive effects of Phyllanthus amarus on improving exercise recovery in sedentary men: a randomized crossover (double-blind) design. Journal of the International Society of Sports Nutrition, 11, 9. DOI: 10.1186/1550–2783 11–9.

    Article  Google Scholar 

  • Sarin, B., Verma, N., Martin, J. P., & Mohanty, A. (2014). An overview of important ethnomedicinal herbs of Phyllanthus species: present status and future Prospects. The Scientific World Journal, 2014, 839–172. DOI: 10.1155/2014/839172.

    Article  Google Scholar 

  • Sen, A., & Batra, A. (2013). The study of in vitro and in vivo antioxidant activity and total phenolic content of Phyllanthus amarus schum. & thonn.: a medicinally important plant. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 942–947.

    Google Scholar 

  • Shokunbi, O. S., & Odetola, A. A. (2008). Gastroprotective and antioxidant activities of Phyllanthus amarus extracts on absolute ethanol-induced ulcer in albino rats. Journal of Medicinal Plants Research, 2(10), 261–267.

    Google Scholar 

  • Tan, S. P., Vuong, Q. V., Stathopoulos, C. E., Parks, S. E., & Roach, P. D. (2014). Optimized aqueous extraction of saponins from bitter melon for production of a saponin-enriched bitter melon powder. Journal of Food Science, 79, E1372–E1381. DOI: 10.1111/1750–3841.12514.

    Article  CAS  Google Scholar 

  • Tang, Y. Q., & Sekaran, S. D. (2011). Evaluation of Phyllanthus for its anti-cancer properties. In P. E. Spiess (Ed.), Prostate cancer — from bench to bedside (pp. 305–320). Rijeka, Croatia: In Tech. DOI: 10.5772/27296.

    Google Scholar 

  • Tang, Y. Q., Jaganath, I., Manikam, R., & Sekaran, S. D. (2013). Phyllanthus suppresses prostate cancer cell, PC-3, proliferation and induces apoptosis through multiple signalling pathways (MAPKs, PI3K/Akt, NFkB, and hypoxia). Evidence-Based Complementary and Alternative Medicine, 2013, 609581. DOI: 10.1155/2013/609581.

    Google Scholar 

  • Teng, H., Lee, W. Y., & Choi, Y. H. (2013). Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus coreanus Miq.) using response surface methodology. Journal of Separation Science, 36, 3107–3114. DOI: 10.1002/jssc.201300303.

    CAS  Google Scholar 

  • Vuong, Q. V., Stathopoulos, C. E., Golding, J. B., Nguyen, M. H., & Roach, P. D. (2011). Optimum conditions for the water extraction of L-theanine from green tea. Journal of Separation Science, 34, 2468–2474. DOI: 10.1002/jssc.201100401.

    Article  CAS  Google Scholar 

  • Vuong, Q. V., Goldsmith, C. D., Dang, T. T., Nguyen, V. T., Bhuyan, D. J., Sadeqzadeh, E., Scarlett, C. J., & Bowyer, M. C. (2014a). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from Euphorbia tirucalli using response surface methodology. Antioxidants, 3, 604–617. DOI: 10.3390/antiox3030604.

    Article  Google Scholar 

  • Vuong, Q. V., Nguyen, V. T., Thanh, D. T., Bhuyan, D. J., Goldsmith, C. D., Sadeqzadeh, E., Scarlett, C. J., & Bowyer, M. C. (2014b). Optimization of ultrasound-assisted extraction conditions for euphol from the medicinal plant, Euphorbia tirucalli, using response surface methodology. Industrial Crops and Products, 63, 197–202. DOI: 10.1016/j.indcrop.2014.09.057.

    Article  Google Scholar 

  • Vuong, Q. V., Hirun, S., Chuen, T. L. K., Goldsmith, C. D., Munro, B., Bowyer, M. C., Chalmers, A. C., Sakoff, J. A., Phillips, P. A., & Scarlett, C. J. (2015). Physicochemical, antioxidant and anti-cancer activity of a Eucalyptus robusta (Sm.) leaf aqueous extract. Industrial Crops and Products, 64, 167–174. DOI: 10.1016/j.indcrop.2014.10.061.

    Article  CAS  Google Scholar 

  • Wen, Y., Chen, H., Zhou, X., Deng, Q., Zhao, Y., Zhao, C., & Gong, X. (2015). Optimization of microwave-assisted extraction and antioxidant activities of anthocyanins from blackberry using a response surface methodology. RSC Advances, 5, 19686–19695. DOI: 10.1039/c4ra16396f.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Van Nguyen or Christopher J. Scarlett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, T., Bowyer, M.C., Van Altena, I.A. et al. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity. Chem. Pap. 70, 713–725 (2016). https://doi.org/10.1515/chempap-2016-0009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0009

Keywords

Navigation