Skip to main content
Log in

Effect of carbon nanotube modification on poly(butylene terephthalate)-based composites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The influence of the chemical modification of carbon nanotubes on the mechanical, thermal and electrical properties of poly(butylene terephthalate)-based composites was investigated. Polymer composites based on poly(butylene terephthalate) were obtained via in situ polymerisation or extrusion. Commercially available multi-walled carbon nanotubes (Nanocyl NC7000) at different loadings (mass %: 0.05, 0.25, 1, 2) were used as fillers. The functionalisation process took place under a chlorine atmosphere followed by a reaction with sodium hydroxide. The effect of carbon nanotube modification was analysed according to the changes in the polymer thermal and mechanical properties. An addition of modified carbon nanotubes in the amount of 0.05 mass % improved the mechanical properties of the composites in terms of both Young’s modulus and tensile strength by 5–10 % and 17–30 % compared with composites with unmodified carbon nanotubes and neat poly(butylene terephthalate), respectively. The in situ method of composite preparation was a more effective technique for enhancing the matrix-filler interactions, although a significantly lower amount of fillers were used than in the extrusion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adar, F., & Noether, H. (1985). Raman microprobe spectra of spin-oriented and drawn filaments of poly(ethylene terephthalate). Polymer, 26, 1935–1943. DOI: 10.1016/0032-3861(85)90171–5.

    Article  CAS  Google Scholar 

  • Al-Omairi, L. M. (2010). Crystallization, mechanical, rheological and degradation behavior of polytrimethylene tereph-thalate, polybutylene terephthalate and polycarbonate blend. Ph.D. thesis, RMIT University, Melbourne, Australia.

    Google Scholar 

  • Bokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. eXPRESS Polymer Letters, 6, 601–608. DOI: 10.3144/ex- presspolymlett.2012.63.

    Article  CAS  Google Scholar 

  • Deng, H., Bilotti, E., Zhang, R., Wang, K., Zhang, Q., Pejs, T., & Fu, Q. (2011). Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by in situ polymerization and filler surface functionalization. Journal of Applied Polymer Science, 120, 133–140. DOI: 10.1002/app.33140.

    Article  CAS  Google Scholar 

  • De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science, 339, 535–539. DOI: 10.1126/science. 1222453.

    Article  Google Scholar 

  • Espinoza-Martinez, A., Avila-Orta, C., Cruz-Delgado, V., Olvera-Neria, O., Gonzalez-Torres, J., & Medellin-Rodriguez, F. (2012). Nucleation mechanisms of aromatic polyesters, PET, PBT, and PEN, on single-wall carbon nanotubes: Early nucleation stages. Journal of Nanomaterials, 2012, article ID 189820. DOI: 10.1155/2012/189820.

  • Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., & Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66, 3115–3125. DOI: 10.1016/j.compscitech.2005.01.014.

    Article  CAS  Google Scholar 

  • Jancar, J., Douglas, J. F., Starr, F. W., Kumar, S. K., Cassagnau, P., Lesser, A. J., Sternstein, S. S., & Buehler, M. J. (2010). Current issues in research on structure-property relationships in polymer nanocomposites. Polymer, 51, 3321–3343. DOI: 10.1016/j.polymer.2010.04.074.

    Article  CAS  Google Scholar 

  • Jin, S. H., Park, Y. B., & Yoon, K. H. (2007). Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Composites Science and Technology, 67, 3434–3441. DOI: 10.1016/j.compscitech.2007.03.013.

    Article  CAS  Google Scholar 

  • Jung, D. D. B., Bhattacharyya, D., & Easteal, A. J. (2007). Spectroscopic analysis of poly(ethylene naphthalate)-poly (butylene terephthalate) blends. Journal of Applied Polymer Science, 106, 1860–1868. DOI: 10.1002/app.26736.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Han, S. I., & Kim, S. H. (2007). Crystallization behaviors and mechanical properties of poly(ethylene 2,6-naphthalate)/multiwall carbon nanotube nanocomposites. Polymer Engineering & Science, 47, 1715–1723. DOI: 10.1002/pen.20789.

    Article  CAS  Google Scholar 

  • Kim, J. Y. (2009). The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposite by simple melt blending. Journal of Applied Polymer Science, 112, 2589–2600. DOI: 10.1002/app.29560.

    Article  CAS  Google Scholar 

  • Kim, J. Y. (2011). Poly(butylene terephthalate) nanocomposites containing carbon nanotube. In B. Reddy (Ed.), Advances in nanocomposites — synthesis, characterization and industrial applications. (chapter 31, pp. 707–726). Rijeka, Croatia: In Tech. DOI: 10.5772/13943.

    Google Scholar 

  • Lau, K. T., & Hui, D. (2002). Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon, 40, 1605–1606. DOI: 10.1016/s0008-6223(02)00157–4.

    Article  CAS  Google Scholar 

  • Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites: Part A: Applied Science and Manufacturing, 41, 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.

    Article  Google Scholar 

  • Mak, C. L., Wong, Y. W., & Chan, W. N. (1998). Application of Raman spectroscopy to determine the strain-level in polybutylene terephthalate (PBT). Polymer Testing, 17, 451–458. DOI: 10.1016/s0142–9418(97)00073–1.

    Article  CAS  Google Scholar 

  • Pelech, I., Narkiewicz, U., Moszynski, D., & Pelech, R. (2012). Simultaneous purification and functionalization of carbon nanotubes using chlorination. Journal of Materials Research, 27, 2368–2374. DOI: 10.1557/jmr.2012.243.

    Article  CAS  Google Scholar 

  • Pelech, I., Pelech, R., Narkiewicz, U., Moszynski, D., Jedrze-jewska, A., & Witkowski, B. (2013). Chlorination of carbon nanotubes obtained on the different metal catalysts. Journal of Nanomaterials, 2013, article ID 836281. DOI: 10.1155/2013/836281.

  • Prado, L. A. S. A., Kwiatkowska, M., Funari, S. S., Roslaniec, Z., Broza, G., & Schulte, K. (2010). Studies on morphology and interphase of poly(butylene terephthalate)/carbon nanotubes nanocomposites. Polymer Engineering & Science, 50, 1571–1576. DOI: 10.1002/pen.21689.

    Article  CAS  Google Scholar 

  • Prado, L. A. S. A., Kopyniecka, A., Chandrasekaran, S., Broza, G., Roslaniec, Z., & Schulte, K. (2013). Impact of filler functionalisation on the crystallinity, thermal stability and mechanical properties of thermoplastic elastomer/carbon nanotube nanocomposites. Macromolecular Materials and Engineering, 298, 359–370. DOI: 10.1002/mame.201200066.

    Article  CAS  Google Scholar 

  • Song, L., & Qiu, Z. (2009). Crystallization behavior and thermal property of biodegradable poly(butylene succinate)/functional multi-walled carbon nanotubes nanocomposite. Polymer Degradation and Stability, 94, 632–637. DOI: 10.1016/j.polymdegradstab.2009.01.009.

    Article  CAS  Google Scholar 

  • Soto, A., Iconomopoulou, S. M., Manikas, A. C., & Voyiatzis, G. A. (2005). Molecular orientation of poly(ethylene terephthalate) and poly(butylene terephthalate) probed by polarized Raman spectra: A parallel study. Applied Spectroscopy, 59, 1257–1269. DOI: 10.1366/000370205774430882.

    Article  CAS  Google Scholar 

  • Tzavalas, S., Drakonakis, V., Mouzakis, D. E., Fischer, D., & Gregoriou, V. G. (2006). Effect of carboxy-functionalized multiwall nanotubes (MWNT-COOH) on the crystallization and chain conformations of poly(ethylene terephthalate) PET in PET-MWNT nanocomposites. Macromolecules, 39, 9150–9156. DOI: 10.1021/ma0613584.

    Article  CAS  Google Scholar 

  • van Krevelen, D. W. (1997). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (3rd ed.). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Wagner, H. D. (2011). Raman spectroscopy of polymer—carbon nanotube composites. In T. McNally, & P. Potschke (Eds.), Polymer-carbon nanotube composites: Preparation, properties and applications (Series: Woodhead publishing in materials, chapter 14, pp. 400–427). Cambridge, UK: Woodhead Publishing. DOI: 10.1533/9780857091390.2.400.

    Google Scholar 

  • Yang, Y. K., Xie, X. L., & Mai, Y. W. (2011). Functionalization of carbon nanotubes for polymer nanocomposites. In T. McNally, & P. Potschke (Eds.), Polymer-carbon nanotube composites: Preparation, properties and applications (Series: Woodhead publishing in materials, chapter 3, pp. 55–91). Cambridge, UK: Woodhead Publishing. DOI: 10.1533/9780857091390.1.55.

    Chapter  Google Scholar 

  • Zhao, C., Hu, G., Justice, R., Schaefer, D. W., Zhang, S., Yang, M., & Han, C. C. (2005). Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 46, 5125–5132. DOI: 10.1016/j.polymer.2005.04.065.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Pełech.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piegat, A., Jędrzejewska, A., Pełech, R. et al. Effect of carbon nanotube modification on poly(butylene terephthalate)-based composites. Chem. Pap. 70, 801–810 (2016). https://doi.org/10.1515/chempap-2016-0007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0007

Keywords

Navigation