Skip to main content
Log in

A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Matrix effects and practical possibilities of reducing accompanying non-spectral interferences in inductively coupled plasma optical emission spectrometry (ICP-OES) were studied for microconcentric Micromist, concentric and V-groove nebulizers (VGN) coupled with two cyclonic spray chambers of different sizes. The effect of a wide scale of interferents and mixtures thereof in the concentration range of up to 2 mass % (Na, Ca, Ba, La, urea) or up to 20 vol. % (nitric acid) on the analysis of Cd, Cu, K, Mg, Mn, Pb and Zn was investigated in terms of their analytical recovery and Mg(II) 280.27 nm/Mg(I) 285.29 nm line intensity ratio. Recoveries of ionic lines were lower than those of atomic lines (37–102 %) depending on the matrix concentration. The Mg(II)/Mg(I) ratios were found to be 12–15 and they slightly decreased as the matrix load increased. Exceptional behavior of pure La matrix, steeply lowering the recoveries and Mg(II)/Mg(I) ratios was observed. A Micromist nebulizer coupled with a small inner volume spray chamber provided the highest recoveries (94–102 %), lowest matrix effects across the matrix loads and, compared to others, the least significant dependence without worsening of the analytical characteristics (recoveries, signal background ratios and the Mg(II)/Mg(I) ratios) across the studied matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, M. Á., Kovachov, N., Almagro, B., Hidalgo, M., & Canals, Á. (2010). Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring®technology. Journal of Analytical Atomic Spectrometry, 25, 1724—1732. DOI: 10.1039/c004854b.

  • Ardini, F., Grotti, M., Sanchez, R., & Todoli, J. L. (2012). Improving the analytical performances of ICP-AES by using a high-temperature single-pass spray chamber and segmented-injections micro-sample introduction for the analysis of environmental samples. Journal of Analytical Atomic Spectrometry, 27, 1400–1404. DOI: 10.1039/c2ja30152k.

    Article  CAS  Google Scholar 

  • Bauer, M., & Broekaert, J. A. C. (2007). Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 145–154. DOI: 10.1016/j.sab.2007.02.006.

    Article  Google Scholar 

  • Becker, J. S., & Dietze, H. J. (1999). Ultratrace and isotope analysis of long-lived radionuclides by inductively coupled plasma quadrupole mass spectrometry using a direct injection high efficiency nebulizer. Analytical Chemistry, 71, 3077–3084. DOI: 10.1021/ac9900883.

    Article  CAS  Google Scholar 

  • Benzo, Z., Maldonado, D., Chirinos, J., Marcano, E., Gomez, C., Quintal, M., & Salas, J. (2009). Evaluation of dual sample introduction systems by comparison of cyclonic spray chambers with different entrance angles for ICP-OES. Microchemical Journal, 93, 127–132. DOI: 10.1016/j.microc.2009.05. 009.

    Article  CAS  Google Scholar 

  • Borkowska-Burnecka, J., Lesniewicz, A., & Zyrnicki, W. (2006). Comparison of pneumatic and ultrasonic nebulizations in inductively coupled plasma atomic emission spectrometry matrix effects and plasma parameters. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 579–587. DOI: 10.1016/j.sab.2006.04.005.

    Article  Google Scholar 

  • Canals, A., Hernandis, V., Todoli, J. L., & Browner, R. F. (1995). Fundamental studies on pneumatic generation and aerosol transport in atomic spectrometry: effect of mineral acids on emission intensity in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 50, 305–321. DOI: 10.1016/0584-8547(94)00138-l.

    Article  Google Scholar 

  • Cano, J. M., Todoli, J. L., Hernandis, V., & Mora, J. (2002). The role of the nebulizer on the sodium interferent effects in inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 17, 57–63. DOI: 10.1039/b105077j.

    Article  CAS  Google Scholar 

  • Chan, G. C. Y., & Hieftje, G. M. (2008a). Warning indicators for the presence of plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 23, 181–192. DOI: 10.1039/b706837a.

    Article  CAS  Google Scholar 

  • Chan, G. C. Y., & Hieftje, G. M. (2008b). Use of vertically resolved plasma emission as an indicator for flagging matrix effects and system drift in inductively coupled plasma-atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 23, 193–204. DOI: 10.1039/b706838g.

    Article  CAS  Google Scholar 

  • de Gois, J. S., Maranhao, T. D. A., Oliveira, F. J. S., Frescura, V. L. A., Curtius, A. J., & Borges, D. L. G. (2012). Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 77, 35–43. DOI: 10.1016/j.sab.2012.08.001.

    Article  Google Scholar 

  • Dubuisson, C., Poussel, E., Todoli, J. L., & Mermet, J. M. (1998). Effect of sodium during the aerosol transport and filtering in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 53, 593–600. DOI: 10.1016/s0584–8547(98)00084-6.

    Article  Google Scholar 

  • Elgersma, J. W., Thuy, D. T., & Groenestein, R. P. (2000). Efficient use of a conventional pneumatic concentric nebulizer in ICP-AES at low liquid uptake rates by applying a desolvation system: determination of detection limits and degrees of acid interferences. Journal of Analytical Atomic Spectrometry, 15, 959–966. DOI: 10.1039/b003250f.

    Article  CAS  Google Scholar 

  • Grotti, M., Leardi, R., & Frache, R. (2002). Combined effects of inorganic acids in inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1915–1924. DOI: 10.1016/s0584-8547(02)00161–1.

    Article  Google Scholar 

  • Iglésias, M., Vaculovic, T., Studynkova, J., Poussel, E., & Mermet, J. M. (2004). Influence of the operating conditions and of the optical transition on non-spectral matrix effects in inductively coupled plasma-atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1841–1850. DOI: 10.1016/j.sab.2004.09.007.

    Article  Google Scholar 

  • Krejčová, A., Černohorský, T., & Curdova, E. (2001). Determination of sodium, potassium, magnesium and calcium in urine by inductively coupled plasma atomic emission spectrometry. The study of matrix effects. Journal of Analytical Atomic Spectrometry, 16, 1002–1005. DOI: 10.1039/b101941o.

    Article  Google Scholar 

  • Krejčová, A., & Černohorský, T. (2003). Comparision of methods used for elimination of matrix effect in ICP-AES. Scientific Papers of the University of Pardubice series A, 173–186.

    Google Scholar 

  • Lehn, S. A., Warner, K. A., Huang, M., & Hieftje, G. M. (2003). Effect of sample matrix on the fundamental properties of the inductively coupled plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 58, 1785–1806. DOI: 10.1016/s0584-8547(03)00159–9.

    Article  Google Scholar 

  • Lide, D. R. (2003). CRC handbook of chemistry and physics. Section 10: Atomic, molecular, and optical physics; ionization potentials of atoms and atomic ions (84th ed.). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Maestre, S., Mora, J., & Todoli, J. L. (2002). Studies about the origin of the non-spectroscopic interferences caused by sodium and calcium in inductively coupled plasma atomic emission spectrometry. Influence of the spray chamber design. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1753–1770. DOI: 10.1016/s0584–8547(02)00141–6.

    Article  Google Scholar 

  • Maestre, S. E., Todoli, J. L., & Mermet, J. M. (2004). Evaluation of several pneumatic micronebulizers with different designs for use in ICP-AES and ICP-MS. Future directions for further improvement. Analytical and Bioanalytical Chemistry, 379, 888–899. DOI: 10.1007/s00216–004–2664–4.

    Article  CAS  Google Scholar 

  • Matusiewicz, H., Slachcinski, M., Hidalgo, M., & Canals, A. (2007). Evaluation of various nebulizers for use in microwave induced plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 22, 1174–1178. DOI: 10.1039/b704612j.

    Article  CAS  Google Scholar 

  • Mora, J., Maestre, S., Hernandis, V., & Todoli, J. L. (2003). Liquid-sample introduction in plasma spectrometry. Trends in Analytical Chemistry, 22, 123–131. DOI: 10.1016/s0165- 9936(03)00301–7.

    Article  CAS  Google Scholar 

  • Packer, A. P., & Mattiazzo, M. E. (2007). Influence of organic and inorganic acids commonly used in soil extraction and digestion procedures in the determination of elements by inductively coupled plasma optical emission spectrometry. Atomic Spectroscopy, 28, 129–136.

    CAS  Google Scholar 

  • Paredes, E., Maestre, S. E., & Todoli, J. L. (2006). Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 326–339. DOI: 10.1016/j.sab.2006.03.005.

    Article  Google Scholar 

  • Roncevic, S., & Pitarevic Svedruzic, L. (2012). Evaluation of matrix effects of polycarboxylic acid introduction in inductively coupled plasma atomic emission spectrometry (ICP-AES). Croatica Chemica Acta, 85, 311–317. DOI: 10.5562/cca2066.

    Article  CAS  Google Scholar 

  • Silva, F. V., Trevizan, L. C., Silva, C. S., Nogueira, A. R. A., & Nobrega, J. A. (2002). Evaluation of inductively coupled plasma optical emission spectrometers with axially and radially viewed configurations. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1905–1913. DOI: 10.1016/s0584- 8547(02)00176–3.

    Article  Google Scholar 

  • Stepan, M., Musil, P., Poussel, E., & Mermet, J. M. (2001). Matrix-induced shift effects in axially viewed inductively coupled plasma atomic emission spectrometry. Spectrochim- ica Acta Part B: Atomic Spectroscopy, 56, 443–453. DOI: 10.1016/s0584–8547(01)00171–9.

    Article  Google Scholar 

  • Stewart, I. I., & Olesik, J. W. (1998). Steady state acid effects in ICP-MS. Journal of Analytical Atomic Spectrometry, 13, 1313–1320. DOI: 10.1039/a806040a.

    Article  CAS  Google Scholar 

  • Todoli, J. L., & Mermet, J. M. (1999). Acid interferences in atomic spectrometry: analyte signal effects and subsequent reduction. Spectrochimica Acta Part B: Atomic Spectroscopy, 54, 895–929. DOI: 10.1016/s0584–8547(99)00041–5.

    Article  Google Scholar 

  • Todoli, J. L., Hernandis, V., Canals, A., & Mermet, J. M. (1999). Comparison of characteristics and limits of detection of pneumatic micronebulizers and a conventional nebulizer operating at low uptake rates in ICP-AES. Journal of Analytical Atomic Spectrometry, 14, 1289–1295. DOI: 10.1039/a900598f.

  • Todoli, J. S., & Mermet, J. M. (2001). Evaluation of a direct injection high-efficiency nebulizer (DIHEN) by comparison with a high-efficiency nebulizer (HEN) coupled to a cyclonic spry chamber as a liwuid sample introduction system for ICP-AES. Journal of Analytical Atomic Spectrometry, 16, 514–520. DOI: 10.1039/b009430g.

    Article  CAS  Google Scholar 

  • Todoli, J. L., Gras, L., Hernandis, V., & Mora, J. (2002). Elemental matrix effects in ICP-AES. Journal of Analytical Atomic Spectrometry, 17, 142–169. DOI: 10.1039/b009570m.

    Article  CAS  Google Scholar 

  • Todoli, J. L., Maestre, S. E., & Mermet, J. M. (2004). Compensation for matrix effects in ICP-AES by using air segmented liquid microsample introduction. The role of the spray chamber. Journal of Analytical Atomic Spectrometry, 19, 728–737. DOI: 10.1039/b317082a.

    Article  CAS  Google Scholar 

  • Tripkovic, M. R., & Holclajtner-Antunovic, I. D. (1993). Study of the matrix effect of easily and non-easily ionizable elements in an inductively coupled argon plasma. Part 1. Spectroscopic diagnostics. Journal of Analytical Atomic Spectrometry, 8, 349–357. DOI: 10.1039/ja9930800349.

    Article  CAS  Google Scholar 

  • Vanhaecke, F., van Holderbeke, M., Moens, L., & Dams, R. (1996). Evaluation of a commercially available microconcentric nebulizer for inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 11, 543–548. DOI: 10.1039/ja9961100543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Krejčová.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krejčová, A., Černohorský, T. & Bendakovská, L. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry. Chem. Pap. 70, 669–684 (2016). https://doi.org/10.1515/chempap-2016-0004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0004

Keywords

Navigation