Skip to main content

Advertisement

Log in

Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Chiral products play an important role particularly in the field of medicinal chemistry, where it is known that enantiomers often have very different biological properties and effects. One of the most powerful tool to obtain a product as a single enantiomer is asymmetric catalysis. Recently, organocatalysis, i.e. the use of small organic molecules to catalyze enantioselective transformations, has emerged as a prominent field in asymmetric synthesis. In this work, the use of hydrogels as a support for a chiral imidazolidinone organocatalyst (MacMillan catalyst) and its application in the reduction of activated olefins mediated by the Hantzsch ester is reported for the first time. Results showed a good activity of hydrogels in respect to both yield and enantioselection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., Camci-Unal, G., Dokmeci, M. R., Peppas, N. A., & Khademhosseini, A. (2014). 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26, 85–124. DOI: 10.1002/adma.201303233.

    Article  CAS  Google Scholar 

  • Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric organocatalysis in continuous flow: Opportunities for impacting industrial catalysis. ACS Catalysis, 5, 1972–1985. DOI: 10.1021/acscatal.5b00002.

    Article  CAS  Google Scholar 

  • Blackmond, D. G., Armstrong, A., Coombe, V., & Wells, A. (2007). Water in organocatalytic processes: Debunking the myths. Angewandte Chemie International Edition, 46, 3798–3800. DOI: 10.1002/anie.200604952.

    Article  CAS  Google Scholar 

  • Brenna, E., Gatti, F. G., Manfredi, A., Monti, D., & Parmeggiani, F. (2012a). Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Organic Process Research & Development, 16, 262–268. DOI: 10.1021/op200086t.

    Article  CAS  Google Scholar 

  • Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2012b). Cascade coupling of ene reductases with alcohol dehydrogenases: Enantioselective reduction of prochiral unsaturated aldehydes. ChemCatChem, 4, 653–659. DOI: 10.1002/cctc.201100418.

    Article  CAS  Google Scholar 

  • Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2012c). Productivity enhancement of C=C bioreductions by coupling the in situ substrate feeding product removal technology with isolated enzymes. Chemical Communications, 48, 79–81. DOI: 10.1039/c1cc16014a.

    Article  CAS  Google Scholar 

  • Brenna, E., Cosi, S. L., Ferrandi, E. E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2013a). Substrate scope and synthetic applications of the enantioselective reduction of a-alkyl-β-arylenones mediated by Old Yellow Enzymes. Organic & Biomolecular Chemistry, 11, 2988–2996. DOI: 10.1039/c3ob40076j.

    Article  CAS  Google Scholar 

  • Brenna, E., Gatti, F. G., Malpezzi, L., Monti, D., Parmeggiani, F., & Sacchetti, A. (2013b). Synthesis of robalzotan, ebalzotan, and rotigotine precursors via the stereoselective multienzymatic cascade reduction of α, β-unsaturated aldehydes. The Journal of Organic Chemistry, 78, 4811–4822. DOI: 10.1021/jo4003097.

    Article  CAS  Google Scholar 

  • Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., Sacchetti, A., & Valoti, J. (2015). Substrate-engineering approach to the stereoselective chemo-multienzymatic cascade synthesis of Nicotiana tabacum lactone. Journal of Molecular Catalysis B: Enzymatic, 114, 77–85. DOI: 10.1016/j.molcatb.2014. 12.011.

    Article  CAS  Google Scholar 

  • Dalko, P. I., & Moisan, L. (2001). Enantioselective organocatalysis. Angewandte Chemie International Edition, 40, 3726–3748. DOI: 10.1002/1521–3773(20011015)40:20<3726::aidanie3726>3.0.co;2-d.

    Article  CAS  Google Scholar 

  • Dalko, P. I., & Moisan, L. (2004). In the golden age of organocatalysis. Angewandte Chemie International Edition, 43, 5138–5175. DOI: 10.1002/anie.200400650.

    Article  CAS  Google Scholar 

  • Danelli, T., Annunziata, R., Benaglia, M., Cinquini, M., Cozzi, F., & Tocco, G. (2003). Immobilization of catalysts derived from Cinchona alkaloids on modified poly(ethylene glycol). Tetrahedron: Asymmetry, 14, 461–467. DOI: 10.1016/s09574166(02)00830-3.

    Article  CAS  Google Scholar 

  • Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N. (2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst. Chemical Papers, 65, 714–720. DOI: 10.2478/s11696-011-0064–8.

    Article  CAS  Google Scholar 

  • Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis: From infancy to adolescence. Angewandte Chemie International Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684.

    Article  CAS  Google Scholar 

  • Ford, M. C., Bertram, J. P., Hynes, S. R., Michaud, M., Li, Q., Young, M., Segal, S. S., Madri, J. A., & Lavik, E. B. (2006). A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 2512–2517. DOI: 10.1073/pnas.0506020102.

    Article  CAS  Google Scholar 

  • Giacalone, F., Gruttadauria, M., Agrigento, P., & Noto, R. (2012). Low-loading asymmetric organocatalysis. Chemical Society Reviews, 41, 2406–2447. DOI: 10.1039/c1cs15206h.

    Article  CAS  Google Scholar 

  • Hayashi, Y. (2006). In water or in the presence of water? Angewandte Chemie International Edition, 45, 8103–8104. DOI: 10.1002/anie.200603378.

    Article  CAS  Google Scholar 

  • Hiki, S., & Kataoka, K. (2007). A facile synthesis of azidoterminated heterobifunctional poly(ethylene glycol)s for “click” conjugation. Bioconjugate Chemistry, 18, 2191–2196. DOI: 10.1021/bc700152j.

    Article  CAS  Google Scholar 

  • Itsuno, S., & Hassan, M. M. (2014). Polymer-immobilized chiral catalysts. RSC Advances, 4, 52023–52043. DOI: 10.1039/c4ra09561h.

    Article  CAS  Google Scholar 

  • Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Clickchemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5.

    Article  CAS  Google Scholar 

  • Lelais, G., & MacMillan, D. W. C. (2006). Modern strategies in organic catalysis: The advent and development of iminium activation. Aldrichimica Acta, 39, 79–87.

    CAS  Google Scholar 

  • MacMillan, D. W. C. (2008). The advent and development of organocatalysis. Nature, 455, 304–308. DOI: 10.1038/nature07367.

    Article  CAS  Google Scholar 

  • Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chemical Society Reviews, 36, 12491262. DOI: 10.1039/b613014n.

    Article  Google Scholar 

  • Munirathinam, R., Huskens, J., & Verboom, W. (2015). Supported catalysis in continuous-flow microreactors. Advanced Synthesis & Catalysis, 357, 1093–1123. DOI: 10.1002/adsc. 201401081.

    Article  CAS  Google Scholar 

  • Ouellet, S. G., Tuttle, J. B., & MacMillan, D. W. C. (2005). Enantioselective organocatalytic hydride reduction. Journal of the American Chemical Society, 127, 32–33. DOI: 10.1021/ja043834g.

    Article  CAS  Google Scholar 

  • Ouellet, S. G., Walji, A. M., & MacMillan, D. W. C. (2007). Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Accounts of Chemical Research, 40, 1327–1339. DOI: 10.1021/ar7001864.

    Article  CAS  Google Scholar 

  • Park, S. Y., Lee, J. W., & Song, C. E. (2015). Parts-permillion level loading organocatalysed enantioselective silylation of alcohols. Nature Communications, 6, 7512, DOI: 10.1038/ncomms8512.

    Article  Google Scholar 

  • Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycolsupported organic catalyst. European Journal of Organic Chemistry, 2004, 567–573. DOI: 10.1002/ejoc.200300571.

    Article  Google Scholar 

  • Rossi, F., Perale, G., Storti, G., & Masi, M. (2012). A library of tunable agarose carbomer-based hydrogels for tissue engineering applications: The role of cross-linkers. Journal of Applied Polymer Science, 123, 2211–2221. DOI: 10.1002/app.34731.

    Article  CAS  Google Scholar 

  • Sacchetti, A., Mauri, E., Sani, M., Masi, M., & Rossi, F. (2014). Microwave-assisted synthesis and click chemistry as simple and efficient strategy for RGD functionalized hydrogels. Tetrahedron Letters, 55, 6817–6820. DOI: 10.1016/j.tetlet.2014.10.069.

    Article  CAS  Google Scholar 

  • Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. The Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394.

    Article  CAS  Google Scholar 

  • Seayad, J., & List, B. (2005). Asymmetric organocatalysis. Organic & Biomolecular Chemistry, 3, 719–724. DOI: 10.1039/b415217b.

    Article  CAS  Google Scholar 

  • Shi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous organocatalysis at work: Functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chemistry A European Journal, 17, 6206–6213. DOI: 10.1002/chem.201100072.

    Article  CAS  Google Scholar 

  • Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106.

    Article  CAS  Google Scholar 

  • Zhu, J., Tang, C., Kottke-Marchant, K., & Marchant, R. E. (2009). Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjugate Chemistry, 20, 333–339. DOI: 10.1021/bc800441v.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Sacchetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacchetti, A., Rossi, F., Rossetti, A. et al. Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water. Chem. Pap. 70, 436–444 (2016). https://doi.org/10.1515/chempap-2015-0232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0232

Keywords

Navigation