Skip to main content
Log in

Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This comparative study focused on the different methods used for the treatment of model waste water polluted with the chlorinated acid dye Mordant Blue 9. Low-cost and commercially available ionic liquids — benzalkonium chloride and Aliquat 336 — were applied as liquid ion-exchangers to precipitate the Mordant Blue 9 by way of ion pair formation between the bulky ammonium cations of ionic liquids and anions of the above dye. The decolorisation efficiency of the ionic liquid application and the effect on reduction of the absorbance, adsorbable organic halogens, chemical oxygen demand and biological oxygen demand were compared with the conventional coagulation, sorption and Fenton oxidation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu, Z., Ertugrul, S., & Donmez, G. (2009). Single and binary chromium(VI) and Remazol Black B biosorption properties of Phormidium sp. Journal of Hazardous Materials, 168, 310–318. DOI: 10.1016/j.jhazmat.2009.02.027.

    Article  CAS  Google Scholar 

  • Álvarez, M. S., Moscoso, F., Rodriguez, A., Sanroman, M. A., & Deive, F. J. (2013). Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 146, 689–695. DOI: 10.1016/j.biortech.2013.07.137.

    Article  Google Scholar 

  • Borodkin, V. F. (1987). Chemistry of organic dyes. Prague, Czech Republic: SNTL.

    Google Scholar 

  • British Standards Institution (1998). Water quality. Determination of biochemical oxygen demand after n days (BODn). Dilution and seeding method with allylthiourea addition. BSEN 1899-1:1998, BS 6068-2.63:1998. London, UK: British Standards Institution.

    Google Scholar 

  • Chun, S. K., Dzyuba, S. V., & Bartsch, R. A. (2001). Influence of sturctural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Analytical Chemistry, 73, 3737–3741. DOI: 10.1021/ac010061v.

    Article  CAS  Google Scholar 

  • Czech Standards Institute (1989). Water quality — Determination of the chemical oxygen demand. CSN ISO 6060. Praha, Czech Republic: Czech Standards Institute.

    Google Scholar 

  • Freemantle, M. (1998). Designer solvents. Ionic liquids may boost clean technology development. Chemical & Engineering News, 76(13), 32–37. DOI: 10.1021/cen-v076n013.p032.

    Article  Google Scholar 

  • Gordon, P. F., & Gregory, P. (1983). Azo dyes. In P. F. Gordon, & P. Gregory (Eds.), Organic chemistry in colour (pp. 95–162). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-82959-8.

    Google Scholar 

  • Koprivanac, N., Kusic, H., Vujevic, D., Peternel, I., & Locke, B. R. (2005). Influence of iron on degradation of organic dyes in corona. Journal of Hazardous Materials, 117, 113–119. DOI: 10.1016/j.jhazmat.2004.03.023.

    Article  CAS  Google Scholar 

  • Meindersma, G., Maase, M., & De Haan, A. (2007). Ullmann’s encyklopedia of industrial chemistry. Weinheim, Germany: Wiley.

    Google Scholar 

  • Mikulasek, P., & Cuhorka, J. (2010). Nanofiltration in the manufacture of liquid dyes production. Water Science & Technology, 61, 1865–1873. DOI: 10.2166/wst.2010.871.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Kavitha, D. (2002). Removal of Congo Red from water by adsorption onto activated carbon pre-pared from coir pith, an agricultural solid waste. Dyes and Pigments, 54, 47–58. DOI: 10.1016/s0143-7208(02)00025-6.

    Article  CAS  Google Scholar 

  • Natarajan, T. S., Bajaj, H. C., & Tayade, R. J. (2014). Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. Journal of Colloid and Interface Scince, 433, 104–114. DOI: 10.1016/j.jcis.2014.07.019.

    Article  CAS  Google Scholar 

  • Pakshirajan, K., & Singh, S. (2010). Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus Phanerochaete chrysosporium. Industrial & Engineering Chemistry Research, 49, 7484–7487. DOI: 10.1021/ie1007079.

    Article  CAS  Google Scholar 

  • Seddon, K. R. (1997). Ionic liquids for clean technology. Journal of Chemical Technology & Biotechnology, 68, 351–356. DOI: 10.1002/(sici)1097-4660(199704)68:4<351::aid-jctb613>3.0.co;2–4.

    Article  CAS  Google Scholar 

  • Sun, X. Q., Ji, Y., Guo, L., Chen, J., & Li, D. Q. (2011). A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides. Separation and Purification Technology, 81, 25–30. DOI: 10.1016/j.seppur.2011.06.034.

    CAS  Google Scholar 

  • Tayade, R. J., Natarajan, T. S., Bajaj, H. C. (2009). Photocatalytic degradation of methylene blue using ultraviolet light emitting diodes. Industrial & Engineering Chemistry Research, 48, 10262–10267. DOI: 10.1021/ie9012437.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M. (2012). Anion exchange resins as effective sorbents for acidic dye removal from aqueous solutions and wastewaters. Solvent Extraction and Ion Exchange, 30, 507–523. DOI: 10.1080/07366299.2011.639253.

    Article  CAS  Google Scholar 

  • Weidlich, T., & Martinkova, J. (2012). Application of tetraphenyl- and ethylriphenylphosphonium salts for separation of reactive dyes from aqueous solution. Separation Science and Technology, 47, 1310–1315. DOI: 10.1080/01496395.2012.672527.

    Article  CAS  Google Scholar 

  • Weidlich, T., & Martínková, J. (2013). CZ Patent: CZ201203 59A. Praha, Czech Republic: Úřad průmyslového vlastnictví.

    Google Scholar 

  • Weidlich, T., Prokeš, L., & Pospíšilová, D. (2013). Debromination of 2,4,6-tribromophenol coupled with biodegradation. Central European Journal of Chemistry, 11, 979–987. DOI: 10.2478/s11532-013-0231-6.

    CAS  Google Scholar 

  • Weidlich, T., Opršal, J., Krejčová, A., & Jašúrek, B. (2015). Effect of glucose on lowering Al-Ni alloy consumption in dehalogenation of halogenoanilines. Monatshefte für Chemie — Chemical Monthly, 146, 613–620. DOI: 10.1007/s00706-014-1344-0.

    Article  CAS  Google Scholar 

  • World Dye Variety (2015). Mordant Blue 9. Retrieved April 10, 2015, from http://www.worlddyevariety.com/mordantdyes/mordant-blue-9.html

    Google Scholar 

  • Zhu, M. G., Zhao, J. M., Li, Y. B., Mehio, N., Qi, Y. R., Liu, H. Z., & Dai, S. (2015). An ionic liquid-based synergistic extraction strategy for rare earths. Green Chemistry, 17, 2981–2993. DOI: 10.1039/c5gc00360a.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Weidlich.

Additional information

Presented at the 42nd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 25–29 May 2015.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimek, M., Mikulášek, P., Kalenda, P. et al. Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water. Chem. Pap. 70, 470–476 (2016). https://doi.org/10.1515/chempap-2015-0225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0225

Key words

Navigation