Skip to main content
Log in

A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Lanthanum sulfophenyl phosphate (LaSPP) was synthesized by m-sulfophenyl phosphonic acid and lanthanum nitrate. UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy indicate that the desired product was obtained and its elementary composition and typical layered structure were determined by energy dispersive X-ray spectroscopy and scanning electron microscopy. Transmission electron microscopy (TEM) proved its typical layered structure and X-ray diffraction spectroscopy indicated its good crystallinity and the interlayer distance of about 15.67 Å, which matches the value obtained by TEM (2.0 nm). Thermogravimetry and differential thermal analysis revealed good thermal stability of LaSPP. Proton conductivity of LaSPP was measured at different temperatures and relative humidities (RH), reaching values of 0.123 S cm−1 at 150°C and 100 % RH. Proton transfer activation energy was 22.52 kJ mol−1. At 160°C and 50 % RH, the conductivity was 0.096 S cm−1. In the drying oven, the conductivity retained the value of 1.118 × 10−2 S cm−1. The results show that LaSPP is a highly effective inorganic-organic conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M. I., Zaidi, S. M. J., Rahman, S. U., & Ahmed, S. (2006). Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Microporous and Mesoporous Materials, 91, 296–304. DOI: 10.1016/j.micromeso.2005.10.029.

    Article  CAS  Google Scholar 

  • Aili, D., Hansen, M. K., Pan, C, Li, Q. F., Christensen, E., Jensen, J. O., & Bjerrum, N. J. (2011). Phosphoric acid doped membranes based on Nafion®, PBI and their blends–Membrane preparation, characterization and steam electrolysis testing. International Journal of Hydrogen Energy, 36, 6985–6993. DOI: 10.1016/j.ijhydene.2011.03.058.

    Article  CAS  Google Scholar 

  • Alberti, G., Casciola, M., Capitani, D., Donnadio, A., Narducci, R., Pica, M., & Sganappa, M. (2007). Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochimitica Acta, 52, 8125–8132. DOI: 10.1016/j.electacta.2007.07.019.

    Article  CAS  Google Scholar 

  • Amirinejad, M., Madaeni, S. S., Rafiee, E., & Amirinejad, S. (2011). Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells. Journal of Membrane Science, 377, 89–98. DOI: 10.1016/j.memsci.2011.04.014.

    Article  CAS  Google Scholar 

  • Amirinejad, M., Madaeni, S. S., Lee, K. S., Ko, U., Rafiee, E., & Lee, J. S. (2012). Sulfonated poly(arylene ether)/hetero-polyacids nanocomposite membranes for proton exchange membrane fuel cells. Electrochimica Acta, 62, 227–233. DOI: 10.1016/j.electacta.2011.12.025.

    Article  CAS  Google Scholar 

  • Colomer, M. T. (2006). Nanoporous anatase thin films as fast proton-conducting materials. Advanced Materials, 18, 371–374. DOI: 10.1002/adma.200500689.

    Article  CAS  Google Scholar 

  • Colomer, M. T., & Zenzinger, K. (2012). Mesoporous α-Fe2O3 membranes as proton conductors: Synthesis by microwave-assisted sol–gel route and effect of their textural characteristics on water uptake and proton conductivity. Microporous and Mesoporous Materials, 161, 123–133. DOI: 10.1016/j.micromeso.2012.05.009.

    Article  CAS  Google Scholar 

  • Cui, Z. M., Xing, W., Liu, C. P., Liao, J. H., & Zhang, H. (2009). Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 188, 24–29. DOI: 10.1016/j.jpowsour.2008.11.108.

    Article  CAS  Google Scholar 

  • Dong, F. L., Li, Z. F., & Wang, Z. H. (2011a). Cerium sul-fonphenyl phosphate, a novel inorgano–organic solid proton–conducting material. Materials Letters, 65, 1431–1433. DOI: 10.1016/j.matlet.2011.02.024.

    Article  CAS  Google Scholar 

  • Dong, F. L., Li, Z. F., Wang, S. W., Xu, L. J., & Yu, X. J. (2011b). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/zirconium sul-fophenylphosphate/PTFE composite membranes. International Journal of Hydrogen Energy, 36, 3681–3687. DOI: 10.1016/j.ijhydene.2010.12.014.

    Article  CAS  Google Scholar 

  • Dong, F. L., Li, Z. F., Wang, S. W., & Wang, Z. H. (2011c). Synthesis and characteristics of proton-conducting membranes based on cerium sulfonphenyl phosphate and poly (2,5-benzimidazole) by hot-pressed method. International Journal of Hydrogen Energy, 36, 11068–11074. DOI: 10.1016/j.ijhydene.2011.05.128.

    Article  CAS  Google Scholar 

  • Jin, L., Li, Z. F., Wang, S. W., Wang, Z. H., Dong, F. L., & Yin, X. Y. (2012). Highly conductive proton exchange membranes based on sulfonated poly(phthalazinone ether sulfone) and cerium sulfophenyl phosphate. Reactive & Functional Polymers, 72, 549–555. DOI: 10.1016/j.reactfunctpolym.2012.05. 007.

    Article  CAS  Google Scholar 

  • Kozhevnikov, I. V. (2007). Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A: Chemical, 262, 86–92. DOI: 10.1016/j.molcata.2006.08.072.

    Article  CAS  Google Scholar 

  • Li, Z. F., Dong, F. L., Xu, L. J., Wang, S. V., & Yu, X. J. (2010). Preparation and properties of medium temperature membranes based on zirconium sulfophenylphosphate/sulfonated poly(phthalazinone ether sulfone ketone) for direct methanol fuel cells. Journal of Membrane Science, 351, 50–57. DOI: 10.1016/j.memsci.2010.01.027.

    Article  CAS  Google Scholar 

  • Liu, G. H., Li, Z. F., Jin, L., & Wang, S. W. (2014). Synthesis of ironIII sulfophenyl phosphate nanosheets as a high temperature inorganic–organic proton conductor. Ionics, 20, 1399–1406. DOI: 10.1007/s11581-014-1109-0.

    Article  CAS  Google Scholar 

  • Montoneri, E., Gallazzi, M. C., & Grassi, M. (1989). Organosul-phur phosphorus acid compounds. Part 1. m-Sulphophenyl-phosphonic acid. Journal of the Chemical Society, Dalton Transactions, 1989, 1819–1823. DOI: 10.1039/dt9890001819.

    Article  Google Scholar 

  • Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sul-fonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36, 1443–1498. DOI: 10.1016/j.progpolymsci.2011.06.001.

    Article  CAS  Google Scholar 

  • Ponomareva, V. G., Lavrova, G. V., & Hairetdinov, E. F. (1997). Hydrogen sensor based on antimonium pentoxide-phosphoric acid solid electrolyte. Sensors and Actuators B: Chemical, 40, 95–98. DOI: 10.1016/s0925-4005(97)80246-8.

    Article  CAS  Google Scholar 

  • Poonjarernsilp, C., Sano, N., & Tamon, H. (2014). Hydrother-mally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis B: Environmental, 147, 726–732. DOI: 10.1016/j.apcatb.2013.10.006.

    Article  CAS  Google Scholar 

  • Qin, Q., Tang, Q. W., Li, Q. H., He, B. L., Chen, H. Y., Wang, X., & Yang, P. Z. (2014). Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 39, 4447–4458. DOI: 10.1016/j.ijhydene.2013.12.205.

    Article  CAS  Google Scholar 

  • Timofeeva, M. N. (2003). Acid catalysis by heteropoly acids. Applied Catalysis A: General, 256, 19–35. DOI: 10.1016/ s0926-860x(03)00386-7.

    Article  CAS  Google Scholar 

  • Tong, X., Wu, W., Wu, Q. Y., Cao, F. H., Yan, W. F., & Yaroslavtsev, A. B. (2013). Proton conducting composite materials containing heteropoly acid and matrices. Materials Chemistry and Physics, 143, 355–359. DOI: 10.1016/j.matchemphys.2013.09.009.

    Article  CAS  Google Scholar 

  • Urban, J., Havlícek, D., & Krajbich, J. (2015). Preparation of quaternary pyridinium salts as possible proton conductors. Chemical Papers, 69, 448–455. DOI: 10.1515/chempap-2015-0037.

    Article  CAS  Google Scholar 

  • Wang, S. W., Dong, F. L., & Li, Z. F. (2012a). Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability. Journal of Materials Science, 47, 4743–4749. DOI: 10.1007/s10853-012-6350-1.

    Article  CAS  Google Scholar 

  • Wang, S. W., Dong, F. L., Li, Z. F., & Jin, L. (2012b). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/tungsten oxide composite membranes. Asia-Pacific Journal of Chemical Engineering, 7, 528–533. DOI: 10.1002/apj.603.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Fang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MF., Li, ZF., Liu, GH. et al. A new high-temperature inorganic–organic proton conductor: lanthanum sulfophenyl phosphate. Chem. Pap. 70, 343–349 (2016). https://doi.org/10.1515/chempap-2015-0219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0219

Keywords

Navigation