Skip to main content
Log in

Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of nickel-modified Y zeolites were prepared for the adsorption of dimethyl sulphide (DMS) in liquid hydrocarbon streams. The adsorption desulphurisation performance was investigated under ambient conditions of nickel-based adsorbents developed by the liquid-phase ion exchange (LPIE) method and the incipient wetness impregnation (IWI) method with and without the ultrasonic aid technique. It was found that the nickel-modified Y zeolite prepared by the IWI method with the ultrasonic aid technique with hydrogen reduction demonstrated a high sulphur capacity of 69.9 mg of S per g of sorbent at a break-through sulphur level of 10 μg g−1. The sorbents thus prepared were characterised by elemental analysis, XRD, TPR, H2 chemisorption, pyridine-FTIR, XPS, and SEM. The results showed that a high dispersion of metallic nickel atoms loaded on Y zeolite had an important role in determining the DMS removal capacity and the adsorption behaviour exhibited a pronounced dependence on the metal introduction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aslam, S., Subhan, F., Yan, Z. F., Xing, W., Zeng, J. B., Liu, Y. X., Ikram, M., Rehman, S., & Ullah, R. (2015). Rapid functionalization of as-synthesized KIT-6 with nickel species occluded with template for adsorptive desulfurization. Microporous and Mesoporous Materials, 214, 54–63. DOI: 10.1016/j.micromeso.2015.04.032.

    Article  CAS  Google Scholar 

  • Chanthaanont, P., & Sirivat, A. (2013). Effect of transition metal ion-exchanged into the zeolite Y on electrical conductivity and response of PEDOT-PSS/MY composites toward SO2. Advances in Polymer Technology, 32, 21367. DOI: 10.1002/adv.21367.

    Article  Google Scholar 

  • Cui, H., & Turn, S. Q. (2009). Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Applied Catalysis B: Environmental, 88, 25–31. DOI: 10.1016/j.apcatb.2008.09.025.

    Article  CAS  Google Scholar 

  • Dastanian, M., & Seyedeyn-Azad, F. (2010). Desulfurization of gasoline over nanoporous nickel-loaded Y-type zeolite at ambient conditions. Industrial & Engineering Chemistry Research, 49, 11254–11259. DOI: 10.1021/ie100941s.

    Article  CAS  Google Scholar 

  • Florez-Rodriguez, P. P., Pamphile-Adrián, A. J., & Passos, F. B. (2014). Glycerol conversion in the presence of carbon dioxide on alumina supported nickel catalyst. Catalysis Today, 237, 38–46. DOI: 10.1016/j.cattod.2013.12.026.

    Article  CAS  Google Scholar 

  • Frey, A. S., & Hinrichsen, O. (2012). Comparison of differently synthesized Ni(Al)MCM-48 catalysts in the ethene to propene reaction. Microporous and Mesoporous Materials, 164, 164–171. DOI: 10.1016/j.micromeso.2012.07.015.

    Article  CAS  Google Scholar 

  • Hernandez, S. P., Fino, D., & Russo, N. (2010). High performance sorbents for diesel oil desulfurization. Chemical Engineering Science, 65, 603–609. DOI: 10.1016/j.ces.2009.06. 050.

    Article  CAS  Google Scholar 

  • Hou, Z. Y., Yokota, O., Tanaka, T., & Yashima, T. (2003). Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2. Applied Catalysis A: General, 253, 381–387. DOI: 10.1016/s0926-860x(03)00543-x.

    Article  CAS  Google Scholar 

  • Huang, H., Yi, D. Z., Lu, Y. N., Wu, X. L., Bai, Y. P., Meng, X., & Shi, L. (2013). Study on the adsorption behavior and mechanism of dimethyl sulfide on silver modified bentonite by in situ FTIR and temperature-programmed desorption. Chemical Engineering Journal, 225, 447–455. DOI: 10.1016/j.cej.2013.04.018.

    Article  CAS  Google Scholar 

  • Huang, H., Yi, D. Z., Lu, Y. N., Wu, X. L., Bai, Y. P., Meng, X., & Shi, L. (2014). Effect of valence of copper on adsorption of dimethyl sulfide from liquid hydrocarbon streams on activated bentonite. Chemical Papers, 68, 98–104. DOI: 10.2478/s11696-013-0408-7.

    Article  CAS  Google Scholar 

  • Kalita, P., Gupta, N. M., & Kumar, R. (2007). Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce–Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 245, 338–347. DOI: 10.1016/j.jcat.2006.10.022.

    Article  CAS  Google Scholar 

  • Ko, C. H., Park, J. G., Park, J. C., Song, H. J., Han, S. S., & Kim, J. N. (2007). Surface status and size influences of nickel nanoparticles on sulfur compound adsorption. Applied Surface Science, 253, 5864–5867. DOI: 10.1016/j.apsusc.2006.12.092.

    Article  CAS  Google Scholar 

  • Li, X. G., He, J. J., Meng, M., Yoneyam, Y., & Tsubaki, N. (2009). One-step synthesis of H–β zeolite-enwrapped Co/Al2O3 Fischer–Tropsch catalyst with high spatial selectivity. Journal of Catalysis, 265, 26–34. DOI: 10.1016/j.jcat. 2009.04.009.

    Article  CAS  Google Scholar 

  • Lin, W. W., Cheng, H. Y., He, L. M., Yu, Y. C., & Z hao, F. Y. (2013). High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 303, 110–116. DOI: 10.1016/j.jcat.2013.03.002.

    Article  CAS  Google Scholar 

  • Ma, X. L., Velu, S., Kim, J. H., & Song, C. S. (2005). Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Applied Cataylsis B: Environmental, 56, 137–147. DOI: 10.1016/j.apcatb.2004.08.013.

    Article  CAS  Google Scholar 

  • Park, K. T., Lee, K. T., Shin, K. S., Yang, E. J., Hyun, B. G., Kim, J. M., Noh, J. H., Kim, M., Kong, B. K., Choi, D. H., Choi, S. J., Jang, P. G., & Jeong, H. J. (2014). Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions. Environmental Science & Technology, 48, 4750–4756. DOI: 10.1021/es403351h.

    Article  CAS  Google Scholar 

  • Satokawa, S., Kobayashi, Y., & Fujiki, H. (2005). Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Applied Catalysis B: Environmental, 56, 51–56. DOI: 10.1016/j.apcatb.2004.06.022.

    Article  CAS  Google Scholar 

  • Sentorun-Shalaby, C., Saha, S. K., Ma, X. L., & Song, C. S. (2011). Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-lowsulfur diesel fuel. Applied Catalysis B: Environmental, 101, 718–726. DOI: 10.1016/j.apcatb.2010.11.014.

    Article  CAS  Google Scholar 

  • Seshu Babu, N., Lingaiah, N., & Sai Prasad, P. S. (2012). Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene. Applied Catalysis B: Environmental, 111–112, 309–316. DOI: 10.1016/j.apcatb.2011.10.013.

    Google Scholar 

  • Subhan, F., & Liu, B. S. (2011). Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chemical Engineering Journal, 178, 69–77. DOI: 10.1016/j.cej.2011.10.013.

    Article  CAS  Google Scholar 

  • Subhan, F., Yan, Z. F., Peng, P., Ikram, M., & Rehman, S. (2014). The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis. Journal of Hazardous Materials, 270, 82–91. DOI: 10.1016/j.jhazmat.2014.01.046.

    Article  CAS  Google Scholar 

  • Tang, X. L., & Shi, L. (2011). Study of the adsorption reactions of thiophene on Cu(I)/HY-Al2O3 by Fourier transform infrared and temperature-programmed desorption: Adsorption, desorption, and sorbent regeneration mechanisms. Langmuir, 27, 11999–12007. DOI: 10.1021/la2025654.

    Article  CAS  Google Scholar 

  • Tang, H., Li, Q. A., Song, Z. Y., Li, W. L., & Xing, J. M. (2011). Enhancement of desulfurization performance of nickel-based adsorbents by hydrogen reduction pretreatment. Catalysis Communications, 12, 1079–1083. DOI: 10.1016/j.catcom.2011.03.022.

    Article  CAS  Google Scholar 

  • Velu, S., Song, C. S., Engelhard, M. H., & Chin, Y. H. (2005). Adsorptive removal of organic sulfur compounds from jet fuel over K-exchanged NiY zeolites prepared by impregnation and ion exchange. Industrial & Engineering Chemistry Research, 44, 5740–5749. DOI: 10.1021/ie0488492.

    Article  CAS  Google Scholar 

  • Wei, Z. S., Li, H. Q., He, J. C., Ye, Q. H., Huang, Q. R., & Luo, Y. W. (2013). Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process. Bioresource Technology, 146, 451–456. DOI: 10.1016/j.biortech.2013.07.114.

    Article  CAS  Google Scholar 

  • Yi, D. Z., Huang, H., Meng, X., & Shi, L. (2014). Adsorption–desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites. Applied Catalysis B: Environmental, 148–149, 377–386. DOI: 10.1016/j.apcatb.2013.11.027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XL., Lu, YN., Huang, H. et al. Adsorption desulphurisation of dimethyl sulphide using nickel-based Y zeolites pretreated by hydrogen reduction. Chem. Pap. 70, 294–304 (2016). https://doi.org/10.1515/chempap-2015-0213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0213

Keywords

Navigation