Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities

Abstract

Biosurfactants have great advantages as an eco-friendly alternative to synthetic surfactants. Surface active properties and antioxidant activity of extracts prepared from Sapindus mukorossi, Verbascum densiflorum, Equisetum arvense, Betula pendula and Bellis perennis have been studied. The extract from Sapindus mukorossi served as a standard because it belongs to the most widely used natural surfactants. The surface active properties of these nonionic surfactants were also compared with the properties of common synthetic surfactants such as sodium lauryl sulfate (SLS) and Tween® 80. In many cases, the plant-derived surfactants showed better properties than the synthetic ones, e.g. minimum critical micelle concentration values were observed for E. arvense (0.033 g L−1), B. perennis (0.076 g L−1), or minimum surface tension reached for the extract of B. perennis (36.8 mN m−1).

This is a preview of subscription content, access via your institution.

References

  1. Abouseoud, M., Maachi, R., & Amrane, A. (2007). Biosurfactant production from olive oil by Pseudomonas fluorescens. In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (pp. 340–347). Madrid, Spain: Formatex.

    Google Scholar 

  2. Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces (6th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  3. Alamanou, S., & Doxastakis, G. (1997). Effect of wet extraction methods on emulsifying and foaming properties of lupin seed protein isolates (Lupinus albus ssp. Graecus). Food Hydrocolloids, 11, 409–413. DOI: 10.1016/s0268-005x(97)80038-0.

    CAS  Article  Google Scholar 

  4. Balakrishnan, S., Varughese, S., & Deshpande, A. P. (2006). Micellar characterisation of saponin from Sapindus mukorossi. Tenside, Surfactants, Detergents, 43, 262–268. DOI: 10.3139/113.100315.

    CAS  Article  Google Scholar 

  5. Carey, E., & Stubenrauch, C. (2010). Foaming properties of mixtures of a non-ionic (C12DMPO) and anionic surfactant (C12TAB). Journal of Colloid and Interface Science, 346, 414–423. DOI: 10.1016/j.jcis.2010.03.013.

    CAS  Article  Google Scholar 

  6. Ceylan, O., Ugur, A., & Sarac, N. (2014). In vitro antimicrobial, antioxidant, antibiofilm and quorum sensing inhibitory activities of Bellis perennis L. Journal of BioScience and Biotechnology, 2014, 35–42.

    Google Scholar 

  7. Chen, W. J., Hsiao, L. C., & Chen, K. K. Y. (2008). Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponic biosurfactant. Process Biochemistry, 43, 488–498. DOI: 10.1016/j.procbio.2007.11.017.

    Article  Google Scholar 

  8. Chen, Y. F., Yang, C. H., Chang, M. S., Ciou, Y. P., & Huang, Y. C. (2010a). Foam properties and detergent abilities of the saponins from Camellia oleifera. International Journal of Molecular Sciences, 11, 4417–4425. DOI: 10.3390/ijms11114417.

    CAS  Article  Google Scholar 

  9. Chen, C. Y., Kuo, P. L., Chen, Y. H., Huang, J. C., Ho, M. L., Lin, R. J., Chang, J. S., & Wang, H. M. (2010b). Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. Journal of the Taiwan Institute of Chemical Engineers, 41, 129–135. DOI: 10.1016/j.jtice.2009.08.005.

    CAS  Article  Google Scholar 

  10. Chhetri, A. B., Watts, K. C., Rahman, M. S., & Islam, M. R. (2009). Soapnut extract as a natural surfactant for enhanced oil recovery. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 31, 1893–1903. DOI: 10.1080/15567030802462622.

    CAS  Article  Google Scholar 

  11. Clarkson, J. R., Cui, Z. F., & Darton, R. C. (2000). Effect of solution conditions on protein damage in foam. Biochemical Engineering Journal, 4, 107–114. DOI: 10.1016/s1369-703x(99)00038-8.

    CAS  Article  Google Scholar 

  12. Dluzewski, M., Dluzewska, E., & Kwasek, L. (1994). Comparison of foaming properties by the volumetric and conductometric methods. Polish Journal of Food and Nutrition Sciences, 3, 155–164.

    CAS  Google Scholar 

  13. Eastoe, J., & Dalton, J. S. (2000). Dynamic surface tension and adsorption mechanisms surfactants at the air-water interface. Advances in Colloid and Interface Science, 85, 103–144. DOI: 10.1016/s0001-8686(99)00017-2.

    CAS  Article  Google Scholar 

  14. Fendler, J. H., & Fendler, E. (1975). Catalysis in micellar and macromolecular systems. New York, NY, USA: Academic Press.

    Google Scholar 

  15. Fu, Y., Lei, P., Han, Y. M., & Yan, D. (2010). Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis. Journal of Chinese Medicinal Materials, 33, 267–272.

    CAS  Google Scholar 

  16. Germanò, M. P., Cacciola, F., Donato, P., Dugo, P., Certo, G., D’Angelo, V., Mondello, L., & Rapisarda, A. (2012). Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia, 83, 877–882. DOI: 10.1016/j.fitote.2012.03.021.

    Article  Google Scholar 

  17. Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2010a). Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International Journal of Molecular Sciences, 11, 4539–4555. DOI: 10.3390/ijms11114539.

    CAS  Article  Google Scholar 

  18. Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E., & Halim, M. R. (2010b). Effect of different light intensities on total phenolics and flavonoid synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897. DOI: 10.3390/ijms11103885.

    CAS  Article  Google Scholar 

  19. Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101–1114. DOI: 10.3390/ijms12021101.

    CAS  Article  Google Scholar 

  20. Gülçin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2004). Antioxidant activity of saponins isolated from ivy: α-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica, 70, 561–563. DOI: 10.1055/s-2004-827158.

    Article  Google Scholar 

  21. Handali, S., Moghimipour, E., Kooshapour, H., Rezaee, S., & Khalili, S. (2014). In vitro cholesterol binding afinity of total sponin extracted from Glycyrrhiza glabra. Asian Journal of Pharmaceutical and Clinical Research, 7, 170–173.

    Google Scholar 

  22. Harborne, J. B., & Williams, C. A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18, 310–333. DOI: 10.1039/b006257j.

    CAS  Article  Google Scholar 

  23. Holmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 148–159. DOI: 10.1016/s1359-0294(01)00074-7.

    CAS  Article  Google Scholar 

  24. Hong, K. J., Tokunaga, S., & Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 49, 379–387. DOI: 10.1016/s0045-6535(02)00321-1.

    CAS  Article  Google Scholar 

  25. Ibrahim, M. H., & Jaafar, H. Z. E. (2013). Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules, 18, 7957–7976. DOI: 10.3390/molecules18077957.

    CAS  Article  Google Scholar 

  26. Jeong, G. T., Park, E. S., Wahlig, V. L., Burapatana, V., Park, D. H., & Tanner, R. D. (2004). Effect of pH on the foam fractionation of Mimosa pudica L. seed proteins. Industrial & Engineering Chemistry Research, 43, 422–427. DOI: 10.1021/ie060318l.

    CAS  Article  Google Scholar 

  27. Jian, H. L., Liao, X. X., Zhu, L. W., Zhang, W. M., & Jiang, J. X. (2011). Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. Journal of Colloid and Interface Science, 359, 487–492. DOI: 10.1016/j.jcis.2011.04.038.

    CAS  Article  Google Scholar 

  28. Khan, A. M., & Shah, S. S. (2008). Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal of the Chemical Society of Pakistan, 30, 186–191.

    CAS  Google Scholar 

  29. Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295–304.

    CAS  Google Scholar 

  30. Li, Y., Du, Y. M., & Zou, C. (2009). Effects of pH on antioxidant and antimicrobial properties of tea saponins. European Food Research & Technology, 228, 1023–1028. DOI: 10.1007/s00217-009-1014-3.

    CAS  Article  Google Scholar 

  31. Li, M. Z., Qiao, N., & Wang, K. (2013a). Influence of sodium lauryl sulfate and Tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics, 5, 508–524. DOI: 10.3390/pharmaceutics5040508.

    CAS  Article  Google Scholar 

  32. Li, R., Wu, Z. L., Wang, Y. J., & Li, L. L. (2013b). Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Industrial Crops and Products, 51, 163–170. DOI: 10.1016/j.indcrop.2013.08.079.

    CAS  Article  Google Scholar 

  33. Lunkenheimer, K., & Wantke, K. D. (1978). On the applicability of the du Nouy (ring) tensiometer method for the determination of surface tensions of surfactant solutions. Journal of Colloid and Interface Science, 66, 579–581. DOI: 10.1016/0021-9797(78)90079-6.

    CAS  Article  Google Scholar 

  34. Lunkenheimer, K., & Malysa, K. (2003). Simple and generally applicable method of determination and evaluation of foam properties. Journal of Surfactants and Detergents, 6, 69–74. DOI: 10.1007/s11743-003-0251-8.

    CAS  Article  Google Scholar 

  35. Ma, Y. B., He, Y. X., Peng, L. X., Wu, J. W., & Mi, Z. J. (2011). Study on isolation and purification of saponin from Sapindaceae with macroporous resin. Chinese Journal of Experimental Traditional Medicinal Formulae, 17, 23–25.

    Google Scholar 

  36. Mahmood, M. E., & Al-Koofee, D. A. F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Global Journal of Science Frontier Research Chemistry, 13, 1–4.

    Google Scholar 

  37. Mainkar, A. R., & Jolly, C. I. (2000). Evaluation of commercial herbal shampoos. International Journal of Cosmetic Science, 22, 385–391. DOI: 10.1046/j.1467-2494.2000.00047.x.

    CAS  Article  Google Scholar 

  38. Máriássyová, M. (2006). Antioxidant activity of some herbal extracts in rapeseed and sunflower oils. Journal of Food and Nutrition Research, 45, 104–109.

    Google Scholar 

  39. McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47, 611–649. DOI: 10.1080/10408390701289292.

    CAS  Article  Google Scholar 

  40. Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., dos Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127–130. DOI: 10.1002/ptr.687.

    CAS  Article  Google Scholar 

  41. Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., & Bozin, B. (2008). Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 13, 1455–1464. DOI: 10.3390/molecules13071455.

    CAS  Article  Google Scholar 

  42. Mitra, S., & Dungan, S. R. (1997). Micellar properties of quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agriculture and Food Chemistry, 45, 1587–1595. DOI: 10.1021/jf960349z.

    CAS  Article  Google Scholar 

  43. Mousli, R., & Tazerouti, A. (2007). Direct method of preparation of dodecanesulfonamide derivatives and some surface properties. Journal of Surfactants and Detergents, 10, 279–285. DOI: 10.1007/s11743-007-1043-5.

    CAS  Article  Google Scholar 

  44. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198. DOI: 10.1016/j.envpol.2004.06.009.

    CAS  Article  Google Scholar 

  45. Mulligan, C. N. (2009). Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 14, 372–378. DOI: 10.1016/j.cocis.2009.06.005.

    CAS  Article  Google Scholar 

  46. Muntaha, S. T., & Khan, M. N. (2015). Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant — a dye surfactant interaction study. Journal of Cleaner Production, 93, 145–150. DOI: 10.1016/j.jclepro.2015.01.023.

    CAS  Article  Google Scholar 

  47. Murakami, M., Yamaguchi, T., Takamura, H., & Matoba, T. (2003). Effects of ascorbic acid and α-tocopherol on antioxidant activity of polyphenolic compounds. Journal of Food Science, 68, 1622–1625. DOI: 10.1111/j.1365-2621.2003.tb12302.x.

    CAS  Article  Google Scholar 

  48. Nakayama, K., Fujino, H., Kasai, R., Mitoma, Y., Yata, N., & Tanaka, O. (1986). Solubilizing properties of saponins from Sapindus mukorossi Gaertn. Chemical and Pharmaceutical Bulletin, 34, 3279–3283. DOI: 10.1248/cpb.34.3279.

    CAS  Article  Google Scholar 

  49. Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57–63. DOI: 10.1016/j.jfoodeng.2014.06.015.

    CAS  Article  Google Scholar 

  50. Rahman, P. K. S. M., & Gakpe, E. (2008). Production, characterisation and applications of biosurfactants — Review. Biotechnology, 7, 360–370. DOI: 10.3923/biotech.2008.360.370.

    CAS  Article  Google Scholar 

  51. Ribeiro, B. D., Alviano, D. S., Barreto, D. W., & Coelho, M. A. Z. (2013). Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 736–743. DOI: 10.1016/j.colsurfa.2013.08.007.

    CAS  Article  Google Scholar 

  52. Rosen, J. M. (2004). Surfactants and interfacial phenomena (3rd ed.). New York, NY, USA: Wiley.

    Book  Google Scholar 

  53. Ross, J., & Miles, G. D. (1941). An apparatus for comparison of foaming properties of soaps and detergents. Journal of the American Oil Chemists’ Society, 18, 99–102. DOI: 10.1007/bf02545418.

    CAS  Google Scholar 

  54. Roy, D., Kommalapati, R. R., Mandava, S. S., Valsaraj, K. T., & Constant, W. D. (1997). Soil washing potential of a natural surfactant. Environmental Science & Technology, 31, 670–675. DOI: 10.1021/es960181y.

    CAS  Article  Google Scholar 

  55. Salati, S., Papa, G., & Adani, F. (2011). Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnology Advances, 29, 913–922. DOI: 10.1016/j.biotechadv.2011.07.012.

    CAS  Article  Google Scholar 

  56. Siatka, T., & Kašparová, M. (2010). Seasonal variation in total phenolic and flavonoid contents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules, 15, 9450–9461. DOI: 10.3390/molecules15129450.

    CAS  Article  Google Scholar 

  57. Silva, C. G., Herdeiro, R. S., Mathias, C. J., Panek, A. D., Silveira, C. S., Rodrigues, V. P., Rennó, M. N., Falcão, D. Q., Cerqueira, D. M., Minto, A. B. M., Nogueira, F. L. P., Quaresma, C. H., Silva, J. F. M., Menezes, F. S., & Eleutherio, E. C. A. (2005). Evaluation of antioxidant activity of Brazilian plants. Pharmacological Research, 52, 229–233. DOI: 10.1016/j.phrs.2005.03.008.

    CAS  Article  Google Scholar 

  58. Song, S. S., Zhu, L. Z., & Zhou, W. J. (2008). Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactants. Environmental Pollution, 156, 1368–1370. DOI: 10.1016/j.envpol.2008.06.018.

    CAS  Article  Google Scholar 

  59. Sparg, S. G., Light, M. E., & van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243. DOI: 10.1016/j.jep.2004.05.016.

    CAS  Article  Google Scholar 

  60. Trouillas, P., Calliste, C. A., Allais, D. P., Simon, A., Marfak, A., Delage, C., & Duroux, J. L. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chemistry, 80, 399–407. DOI: 10.1016/s0308-8146(02)00282-0.

    CAS  Article  Google Scholar 

  61. Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–1150. DOI: 10.1016/j.chemosphere.2004.07.048.

    CAS  Article  Google Scholar 

  62. Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297. DOI: 10.1016/j.phytochem.2006.10.008.

    CAS  Article  Google Scholar 

  63. von Rybinski, W. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 146–147. DOI: 10.1016/s1359-0294(01)00081-4.

    Article  Google Scholar 

  64. Wu, H., Zhang, L., Wang, N., Guo, Y. Z., Weng, Z., Sun, Z. Y., Xu, D. P., Xie, Y. F., & Yao, W. R. (2014). Analysis of the bioactive components of Sapindus saponins. Industrial Crops and Products, 61, 422–429. DOI: 10.1016/j.indcrop.2014.07.026.

    Article  Google Scholar 

  65. Yang, C. H., Huang, Y. C., Chen, Y. F., & Chang, M. H. (2010). Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi. Journal of Food and Drug Analysis, 18, 155–160.

    CAS  Google Scholar 

  66. Yang, Y., Leser, M. E., Sher, A. A., & McClements, D. J. (2013). Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-Naturale®). Food Hydrocolloids, 30, 589–596. DOI: 10.1016/j.foodhyd.2012.08.008.

    CAS  Article  Google Scholar 

  67. Yin, S. W., Chen, J. C., Sun, S. D., Tang, C. H., Yang, X. Q., Wen, Q. B., & Qi, J. R. (2011). Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chemistry, 128, 420–426. DOI: 10.1016/j.foodchem.2011.03.046.

    CAS  Article  Google Scholar 

  68. Zdziennicka, A., Szymczyk, K., Krawczyk, J., & Jańczuk, B. (2012). Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria 322–323, 126–134. DOI: 10.1016/j.fluid.2012.03.018.

    Article  Google Scholar 

  69. Zhou, W. J., Yang, J. J., Lou, L. J., & Zhu, L. Z. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159, 1198–1204. DOI: 10.1016/j.envpol.2011.02.001.

    CAS  Article  Google Scholar 

  70. Zhou, W. J., Wang, X. H., Chen, C. P., & Zhu, L. Z. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122–128. DOI: 10.1016/j.colsurfa.2013.02.055.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lenka Tmáková.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tmáková, L., Sekretár, S. & Schmidt, Š. Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities. Chem. Pap. 70, 188–196 (2016). https://doi.org/10.1515/chempap-2015-0200

Download citation

Keywords

  • surfactants
  • saponins
  • extracts
  • surface tension
  • micelles