Chemical Papers

, Volume 70, Issue 2, pp 188–196 | Cite as

Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities

  • Lenka TmákováEmail author
  • Stanislav Sekretár
  • Štefan Schmidt
Original Paper


Biosurfactants have great advantages as an eco-friendly alternative to synthetic surfactants. Surface active properties and antioxidant activity of extracts prepared from Sapindus mukorossi, Verbascum densiflorum, Equisetum arvense, Betula pendula and Bellis perennis have been studied. The extract from Sapindus mukorossi served as a standard because it belongs to the most widely used natural surfactants. The surface active properties of these nonionic surfactants were also compared with the properties of common synthetic surfactants such as sodium lauryl sulfate (SLS) and Tween® 80. In many cases, the plant-derived surfactants showed better properties than the synthetic ones, e.g. minimum critical micelle concentration values were observed for E. arvense (0.033 g L−1), B. perennis (0.076 g L−1), or minimum surface tension reached for the extract of B. perennis (36.8 mN m−1).


surfactants saponins extracts surface tension micelles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abouseoud, M., Maachi, R., & Amrane, A. (2007). Biosurfactant production from olive oil by Pseudomonas fluorescens. In A. Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (pp. 340–347). Madrid, Spain: Formatex.Google Scholar
  2. Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces (6th ed.). New York, NY, USA: Wiley.Google Scholar
  3. Alamanou, S., & Doxastakis, G. (1997). Effect of wet extraction methods on emulsifying and foaming properties of lupin seed protein isolates (Lupinus albus ssp. Graecus). Food Hydrocolloids, 11, 409–413. DOI:  10.1016/s0268-005x(97)80038-0.CrossRefGoogle Scholar
  4. Balakrishnan, S., Varughese, S., & Deshpande, A. P. (2006). Micellar characterisation of saponin from Sapindus mukorossi. Tenside, Surfactants, Detergents, 43, 262–268. DOI:  10.3139/113.100315.CrossRefGoogle Scholar
  5. Carey, E., & Stubenrauch, C. (2010). Foaming properties of mixtures of a non-ionic (C12DMPO) and anionic surfactant (C12TAB). Journal of Colloid and Interface Science, 346, 414–423. DOI:  10.1016/j.jcis.2010.03.013.CrossRefGoogle Scholar
  6. Ceylan, O., Ugur, A., & Sarac, N. (2014). In vitro antimicrobial, antioxidant, antibiofilm and quorum sensing inhibitory activities of Bellis perennis L. Journal of BioScience and Biotechnology, 2014, 35–42.Google Scholar
  7. Chen, W. J., Hsiao, L. C., & Chen, K. K. Y. (2008). Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponic biosurfactant. Process Biochemistry, 43, 488–498. DOI:  10.1016/j.procbio.2007.11.017.CrossRefGoogle Scholar
  8. Chen, Y. F., Yang, C. H., Chang, M. S., Ciou, Y. P., & Huang, Y. C. (2010a). Foam properties and detergent abilities of the saponins from Camellia oleifera. International Journal of Molecular Sciences, 11, 4417–4425. DOI:  10.3390/ijms11114417.CrossRefGoogle Scholar
  9. Chen, C. Y., Kuo, P. L., Chen, Y. H., Huang, J. C., Ho, M. L., Lin, R. J., Chang, J. S., & Wang, H. M. (2010b). Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. Journal of the Taiwan Institute of Chemical Engineers, 41, 129–135. DOI:  10.1016/j.jtice.2009.08.005.CrossRefGoogle Scholar
  10. Chhetri, A. B., Watts, K. C., Rahman, M. S., & Islam, M. R. (2009). Soapnut extract as a natural surfactant for enhanced oil recovery. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 31, 1893–1903. DOI:  10.1080/15567030802462622.CrossRefGoogle Scholar
  11. Clarkson, J. R., Cui, Z. F., & Darton, R. C. (2000). Effect of solution conditions on protein damage in foam. Biochemical Engineering Journal, 4, 107–114. DOI:  10.1016/s1369-703x(99)00038-8.CrossRefGoogle Scholar
  12. Dluzewski, M., Dluzewska, E., & Kwasek, L. (1994). Comparison of foaming properties by the volumetric and conductometric methods. Polish Journal of Food and Nutrition Sciences, 3, 155–164.Google Scholar
  13. Eastoe, J., & Dalton, J. S. (2000). Dynamic surface tension and adsorption mechanisms surfactants at the air-water interface. Advances in Colloid and Interface Science, 85, 103–144. DOI:  10.1016/s0001-8686(99)00017-2.CrossRefGoogle Scholar
  14. Fendler, J. H., & Fendler, E. (1975). Catalysis in micellar and macromolecular systems. New York, NY, USA: Academic Press.Google Scholar
  15. Fu, Y., Lei, P., Han, Y. M., & Yan, D. (2010). Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis. Journal of Chinese Medicinal Materials, 33, 267–272.Google Scholar
  16. Germanò, M. P., Cacciola, F., Donato, P., Dugo, P., Certo, G., D’Angelo, V., Mondello, L., & Rapisarda, A. (2012). Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia, 83, 877–882. DOI:  10.1016/j.fitote.2012.03.021.CrossRefGoogle Scholar
  17. Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2010a). Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. International Journal of Molecular Sciences, 11, 4539–4555. DOI:  10.3390/ijms11114539.CrossRefGoogle Scholar
  18. Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E., & Halim, M. R. (2010b). Effect of different light intensities on total phenolics and flavonoid synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897. DOI:  10.3390/ijms11103885.CrossRefGoogle Scholar
  19. Ghasemzadeh, A., & Jaafar, H. Z. E. (2011). Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 12, 1101–1114. DOI:  10.3390/ijms12021101.CrossRefGoogle Scholar
  20. Gülçin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2004). Antioxidant activity of saponins isolated from ivy: α-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica, 70, 561–563. DOI:  10.1055/s-2004-827158.CrossRefGoogle Scholar
  21. Handali, S., Moghimipour, E., Kooshapour, H., Rezaee, S., & Khalili, S. (2014). In vitro cholesterol binding afinity of total sponin extracted from Glycyrrhiza glabra. Asian Journal of Pharmaceutical and Clinical Research, 7, 170–173.Google Scholar
  22. Harborne, J. B., & Williams, C. A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18, 310–333. DOI:  10.1039/b006257j.CrossRefGoogle Scholar
  23. Holmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 148–159. DOI:  10.1016/s1359-0294(01)00074-7.CrossRefGoogle Scholar
  24. Hong, K. J., Tokunaga, S., & Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 49, 379–387. DOI:  10.1016/s0045-6535(02)00321-1.CrossRefGoogle Scholar
  25. Ibrahim, M. H., & Jaafar, H. Z. E. (2013). Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules, 18, 7957–7976. DOI:  10.3390/molecules18077957.CrossRefGoogle Scholar
  26. Jeong, G. T., Park, E. S., Wahlig, V. L., Burapatana, V., Park, D. H., & Tanner, R. D. (2004). Effect of pH on the foam fractionation of Mimosa pudica L. seed proteins. Industrial & Engineering Chemistry Research, 43, 422–427. DOI:  10.1021/ie060318l.CrossRefGoogle Scholar
  27. Jian, H. L., Liao, X. X., Zhu, L. W., Zhang, W. M., & Jiang, J. X. (2011). Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. Journal of Colloid and Interface Science, 359, 487–492. DOI:  10.1016/j.jcis.2011.04.038.CrossRefGoogle Scholar
  28. Khan, A. M., & Shah, S. S. (2008). Determination of critical micelle concentration (Cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. Journal of the Chemical Society of Pakistan, 30, 186–191.Google Scholar
  29. Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295–304.Google Scholar
  30. Li, Y., Du, Y. M., & Zou, C. (2009). Effects of pH on antioxidant and antimicrobial properties of tea saponins. European Food Research & Technology, 228, 1023–1028. DOI:  10.1007/s00217-009-1014-3.CrossRefGoogle Scholar
  31. Li, M. Z., Qiao, N., & Wang, K. (2013a). Influence of sodium lauryl sulfate and Tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics, 5, 508–524. DOI:  10.3390/pharmaceutics5040508.CrossRefGoogle Scholar
  32. Li, R., Wu, Z. L., Wang, Y. J., & Li, L. L. (2013b). Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Industrial Crops and Products, 51, 163–170. DOI:  10.1016/j.indcrop.2013.08.079.CrossRefGoogle Scholar
  33. Lunkenheimer, K., & Wantke, K. D. (1978). On the applicability of the du Nouy (ring) tensiometer method for the determination of surface tensions of surfactant solutions. Journal of Colloid and Interface Science, 66, 579–581. DOI:  10.1016/0021-9797(78)90079-6.CrossRefGoogle Scholar
  34. Lunkenheimer, K., & Malysa, K. (2003). Simple and generally applicable method of determination and evaluation of foam properties. Journal of Surfactants and Detergents, 6, 69–74. DOI:  10.1007/s11743-003-0251-8.CrossRefGoogle Scholar
  35. Ma, Y. B., He, Y. X., Peng, L. X., Wu, J. W., & Mi, Z. J. (2011). Study on isolation and purification of saponin from Sapindaceae with macroporous resin. Chinese Journal of Experimental Traditional Medicinal Formulae, 17, 23–25.Google Scholar
  36. Mahmood, M. E., & Al-Koofee, D. A. F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Global Journal of Science Frontier Research Chemistry, 13, 1–4.Google Scholar
  37. Mainkar, A. R., & Jolly, C. I. (2000). Evaluation of commercial herbal shampoos. International Journal of Cosmetic Science, 22, 385–391. DOI:  10.1046/j.1467-2494.2000.00047.x.CrossRefGoogle Scholar
  38. Máriássyová, M. (2006). Antioxidant activity of some herbal extracts in rapeseed and sunflower oils. Journal of Food and Nutrition Research, 45, 104–109.Google Scholar
  39. McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 47, 611–649. DOI:  10.1080/10408390701289292.CrossRefGoogle Scholar
  40. Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., dos Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127–130. DOI:  10.1002/ptr.687.CrossRefGoogle Scholar
  41. Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., & Bozin, B. (2008). Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 13, 1455–1464. DOI:  10.3390/molecules13071455.CrossRefGoogle Scholar
  42. Mitra, S., & Dungan, S. R. (1997). Micellar properties of quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agriculture and Food Chemistry, 45, 1587–1595. DOI:  10.1021/jf960349z.CrossRefGoogle Scholar
  43. Mousli, R., & Tazerouti, A. (2007). Direct method of preparation of dodecanesulfonamide derivatives and some surface properties. Journal of Surfactants and Detergents, 10, 279–285. DOI:  10.1007/s11743-007-1043-5.CrossRefGoogle Scholar
  44. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198. DOI:  10.1016/j.envpol.2004.06.009.CrossRefGoogle Scholar
  45. Mulligan, C. N. (2009). Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 14, 372–378. DOI:  10.1016/j.cocis.2009.06.005.CrossRefGoogle Scholar
  46. Muntaha, S. T., & Khan, M. N. (2015). Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant — a dye surfactant interaction study. Journal of Cleaner Production, 93, 145–150. DOI:  10.1016/j.jclepro.2015.01.023.CrossRefGoogle Scholar
  47. Murakami, M., Yamaguchi, T., Takamura, H., & Matoba, T. (2003). Effects of ascorbic acid and α-tocopherol on antioxidant activity of polyphenolic compounds. Journal of Food Science, 68, 1622–1625. DOI:  10.1111/j.1365-2621.2003.tb12302.x.CrossRefGoogle Scholar
  48. Nakayama, K., Fujino, H., Kasai, R., Mitoma, Y., Yata, N., & Tanaka, O. (1986). Solubilizing properties of saponins from Sapindus mukorossi Gaertn. Chemical and Pharmaceutical Bulletin, 34, 3279–3283. DOI:  10.1248/cpb.34.3279.CrossRefGoogle Scholar
  49. Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57–63. DOI:  10.1016/j.jfoodeng.2014.06.015.CrossRefGoogle Scholar
  50. Rahman, P. K. S. M., & Gakpe, E. (2008). Production, characterisation and applications of biosurfactants — Review. Biotechnology, 7, 360–370. DOI:  10.3923/biotech.2008.360.370.CrossRefGoogle Scholar
  51. Ribeiro, B. D., Alviano, D. S., Barreto, D. W., & Coelho, M. A. Z. (2013). Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 736–743. DOI:  10.1016/j.colsurfa.2013.08.007.CrossRefGoogle Scholar
  52. Rosen, J. M. (2004). Surfactants and interfacial phenomena (3rd ed.). New York, NY, USA: Wiley.CrossRefGoogle Scholar
  53. Ross, J., & Miles, G. D. (1941). An apparatus for comparison of foaming properties of soaps and detergents. Journal of the American Oil Chemists’ Society, 18, 99–102. DOI:  10.1007/bf02545418.Google Scholar
  54. Roy, D., Kommalapati, R. R., Mandava, S. S., Valsaraj, K. T., & Constant, W. D. (1997). Soil washing potential of a natural surfactant. Environmental Science & Technology, 31, 670–675. DOI:  10.1021/es960181y.CrossRefGoogle Scholar
  55. Salati, S., Papa, G., & Adani, F. (2011). Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnology Advances, 29, 913–922. DOI:  10.1016/j.biotechadv.2011.07.012.CrossRefGoogle Scholar
  56. Siatka, T., & Kašparová, M. (2010). Seasonal variation in total phenolic and flavonoid contents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules, 15, 9450–9461. DOI:  10.3390/molecules15129450.CrossRefGoogle Scholar
  57. Silva, C. G., Herdeiro, R. S., Mathias, C. J., Panek, A. D., Silveira, C. S., Rodrigues, V. P., Rennó, M. N., Falcão, D. Q., Cerqueira, D. M., Minto, A. B. M., Nogueira, F. L. P., Quaresma, C. H., Silva, J. F. M., Menezes, F. S., & Eleutherio, E. C. A. (2005). Evaluation of antioxidant activity of Brazilian plants. Pharmacological Research, 52, 229–233. DOI:  10.1016/j.phrs.2005.03.008.CrossRefGoogle Scholar
  58. Song, S. S., Zhu, L. Z., & Zhou, W. J. (2008). Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactants. Environmental Pollution, 156, 1368–1370. DOI:  10.1016/j.envpol.2008.06.018.CrossRefGoogle Scholar
  59. Sparg, S. G., Light, M. E., & van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243. DOI:  10.1016/j.jep.2004.05.016.CrossRefGoogle Scholar
  60. Trouillas, P., Calliste, C. A., Allais, D. P., Simon, A., Marfak, A., Delage, C., & Duroux, J. L. (2003). Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chemistry, 80, 399–407. DOI:  10.1016/s0308-8146(02)00282-0.CrossRefGoogle Scholar
  61. Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–1150. DOI:  10.1016/j.chemosphere.2004.07.048.CrossRefGoogle Scholar
  62. Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297. DOI:  10.1016/j.phytochem.2006.10.008.CrossRefGoogle Scholar
  63. von Rybinski, W. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6, 146–147. DOI:  10.1016/s1359-0294(01)00081-4.CrossRefGoogle Scholar
  64. Wu, H., Zhang, L., Wang, N., Guo, Y. Z., Weng, Z., Sun, Z. Y., Xu, D. P., Xie, Y. F., & Yao, W. R. (2014). Analysis of the bioactive components of Sapindus saponins. Industrial Crops and Products, 61, 422–429. DOI:  10.1016/j.indcrop.2014.07.026.CrossRefGoogle Scholar
  65. Yang, C. H., Huang, Y. C., Chen, Y. F., & Chang, M. H. (2010). Foam properties, detergent abilities and long-term preservative efficacy of the saponins from Sapindus mukorossi. Journal of Food and Drug Analysis, 18, 155–160.Google Scholar
  66. Yang, Y., Leser, M. E., Sher, A. A., & McClements, D. J. (2013). Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-Naturale®). Food Hydrocolloids, 30, 589–596. DOI:  10.1016/j.foodhyd.2012.08.008.CrossRefGoogle Scholar
  67. Yin, S. W., Chen, J. C., Sun, S. D., Tang, C. H., Yang, X. Q., Wen, Q. B., & Qi, J. R. (2011). Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chemistry, 128, 420–426. DOI:  10.1016/j.foodchem.2011.03.046.CrossRefGoogle Scholar
  68. Zdziennicka, A., Szymczyk, K., Krawczyk, J., & Jańczuk, B. (2012). Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilibria 322–323, 126–134. DOI:  10.1016/j.fluid.2012.03.018.CrossRefGoogle Scholar
  69. Zhou, W. J., Yang, J. J., Lou, L. J., & Zhu, L. Z. (2011). Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 159, 1198–1204. DOI:  10.1016/j.envpol.2011.02.001.CrossRefGoogle Scholar
  70. Zhou, W. J., Wang, X. H., Chen, C. P., & Zhu, L. Z. (2013). Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 122–128. DOI:  10.1016/j.colsurfa.2013.02.055.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Lenka Tmáková
    • 1
    Email author
  • Stanislav Sekretár
    • 1
  • Štefan Schmidt
    • 1
  1. 1.Department of Food Science and Technology, Faculty of Chemical and Food Technology in BratislavaSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations