Skip to main content
Log in

Cheese whey tangential filtration using tubular mineral membranes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Membrane separation techniques are extensively used in dairy industry both for milk and cheese whey processing. However, cheese whey might still be considered as a problematic waste despite its high content of many valuable substances, such as proteins, lactose or minerals, which can be further used, e.g. in human nutrition, pharmacy or biotechnologies. Another problem, which food technologists have to face, is variable quality, composition and properties of food materials bringing high demands on manufacturing industry. In this paper, filtration kinetics and separation efficiency during purification and fractionation of cheese whey (sweet and salty) from Czech dairies by pilot-plant filtration (Bollene, France) was studied using tubular membranes (Membralox, USA). Various mineral membranes’ cut-offs were tested and all experiments ran in the retentate recycling mode. The obtained mass concentration factors were between 1.9 and 16.5. Steady state fluxes were calculated from the experimental data using a mathematical model. Fine ultrafiltration on a 5 kDa membrane gave steady state fluxes of 14–19 L m−2 h−1. The coarse pre-filtration on 100 nm, 200 nm or 500 nm membranes showed various permeate fluxes between 22 L m−2 h−1 and 153 L m−2 h−1. Despite the high pore sizes of the used membranes, lactose was partially rejected by all membranes tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimar, P., Taddei, C., Lafaille, J. P., & Sanchez, V. (1988). Mass transfer limitations during ultrafiltration of cheese whey with inorganic membranes. Journal of Membrane Science, 38, 203–221. DOI: 10.1016/s0376-7388(00)82420-5.

    Article  CAS  Google Scholar 

  • Almécija, M. C., Ibáñez, R., Guadix, A., & Guadix, E. M., (2007). Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. Journal of Membrane Science, 288, 28–35. DOI: 10.1016/j.memsci.2006.10. 021.

    Article  Google Scholar 

  • Atra, R., Vatai, G., Bekassy-Molnar, E., & Balint, A. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. Journal of Food Engineering, 67, 325–332. DOI: 10.1016/j.jfoodeng.2004.04.035.

    Article  Google Scholar 

  • Brans, G., Schröen, C. G. P. H., van der Sman, R. G. M., & Boom, R. M. (2004). Membrane fractionation of milk: state of the art and challenges. Journal of Membrane Science, 243, 263–272. DOI: 10.1016/j.memsci.2004.06.029.

    Article  CAS  Google Scholar 

  • Blaschek, K. M., Wendorff, W. L., & Rankin, S. A. (2007). Survey of salty and sweet whey composition from various cheese plants in Wisconsin. Journal of Dairy Science, 90, 2029–2034. DOI: 10.3168/jds.2006-770.

    Article  CAS  Google Scholar 

  • Corbatón-Báguena, M. J., Álvarez-Blanco, S., & Vincent-Vela, M. C. (2015). Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination, 360, 87–96. DOI: 10.1016/j.desal.2015.01.019.

    Article  Google Scholar 

  • Cheryan, M., & Kuo, K. P. (1984). Hollow fibers and spiral wound modules for ultrafiltration of whey: Energy consumption and performance. Journal of Dairy Science, 67, 1406–1413. DOI: 10.3168/jds.s0022-0302(84)81455-1.

    Article  Google Scholar 

  • Cheryan, M. (1998). Ultrafiltration and microfiltration handbook (2nd ed.). Urbana, IL, USA: Technomic Publishing Company.

    Google Scholar 

  • Cheang, B. L., & Zydney, A. L. (2004). A two stage ultrafiltration process for fractionation of whey protein isolate. Journal of Membrane Science, 231, 159–167. DOI: 10.1016/j.memsci.2003.11.014.

    Article  CAS  Google Scholar 

  • Doyen, W., Andriansens, W., Molenberghs, B., & Leysen, R. (1996). A comparison between polysulfone, zirconia and organo-mineral membranes for use in ultrafiltration. Journal of Membrane Science, 113, 247–258. DOI: 10.1016/0376-7388(95)00124-7.

    Article  CAS  Google Scholar 

  • Hanemaaijer, J. H., Robbertsen, T., van den Boomgaard, T., & Gunnink, J. W. (1989). Fouling of ultrafiltration membrane: The role of protein adsorption and salt precipitation. Journal of Membrane Science, 40, 199–217. DOI: 10.1016/0376-7388(89)89005-2.

    Article  CAS  Google Scholar 

  • International Association for Cereal Science and Technology (1996). ICC standard methods: Determination of crude protein in cereals and cereal products for food and for feed. ICC 105/2. Vienna, Austria.

    Google Scholar 

  • Konrad, G., Kleinschmidt, T., & Faber, W. (2012). Ultrafiltration flux of acid whey obtained by lactic acid fermentation. International Dairy Journal, 22, 73–77. DOI: 10.1016/j.idairyj.2011.08.005.

    Article  CAS  Google Scholar 

  • Maubois, J. L., & Ollivier, G. (1997). Extraction of milk proteins. In S. Damodaran, & A. Paraf (Eds.), Food proteins and their applications (pp. 225–256). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Merin, U., & Cheryan, M. (1980). Factors affecting the mechanism of flux decline during ultrafiltration of cottage cheese whey. Journal of Food Processing and Preservation, 4, 183–198. DOI: 10.1111/j.1745-4549.1980.tb00604.x.

    Article  CAS  Google Scholar 

  • Muller, A., Daufin, G., & Chaufer, B. (1999). Ultrafiltration modes of operation for the separation of a-lactalbumin from acid casein whey. Journal of Membrane Science, 153, 9–21. DOI: 10.1016/s0376-7388(98)00218-x.

    Article  CAS  Google Scholar 

  • Qin, J. J., Wong, F. S., Li, Y., & Liu, Y. T. (2003). A high flux ultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol. Journal of Membrane Science, 211, 139–147. DOI: 10.1016/s0376-7388(02)00415-5.

    Article  CAS  Google Scholar 

  • Rao, H. G. R. (2002). Mechanisms of flux decline during ultrafiltration of dairy products and influence of pH on flux rates of whey and buttermilk. Desalination, 144, 319–324. DOI: 10.1016/s0011-9164(02)00336-3.

    Article  Google Scholar 

  • Räsänen, E., Nyström, M., Sahlstein, J., & Tossavainen, O. (2002). Comparison of commercial membranes in nanofiltration of sweet whey. Le Lait, 82, 343–356. DOI: 10.1051/lait: 2002015.

    Article  Google Scholar 

  • Suárez, E., Lobo, A., Álvarez, S., Riera, F. A., & Álvarez, R. (2006). Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot plant scale. Desalination, 198, 274–281. DOI: 10.1016/j.desal.2005.12.028.

    Article  Google Scholar 

  • Yorgun, M. S., Balcioglu, I. A., & Saygin, O. (2008). Performance comparison of ultrafiltration, nanofiltration and reverse osmosis on whey treatment. Desalination, 229, 204–216. DOI: 10.1016/j.desal.2007.09.008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazih Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinkova, A., Bubnik, Z., Henke, S. et al. Cheese whey tangential filtration using tubular mineral membranes. Chem. Pap. 70, 325–332 (2016). https://doi.org/10.1515/chempap-2015-0191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0191

Keywords

Navigation