Skip to main content

Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery

Abstract

A novel polymerizable hydrophobic monomer 1-(4-dodecyloxy-phenyl)-propenone (DPP) was synthesized by esterification, Frise rearrangement and Williamson etherification; then, the obtained DPP was copolymerized with 2-(acrylamido)-dodecanesulfonic acid (AMC12S) and acrylamide (AM) initiated by a redox initiation system in an aqueous medium to enhance oil recovery (EOR). AM/AMC12S/DPP (PADP) was characterized by FT-IR 1H NMR spectroscopy, environmental scanning electron microscopy (ESEM), DSC-TG, fluorescent probe, core flood test, etc. Results of ESEM and fluorescent probe indicate that hydrophobic microdomains and associating three-dimensional networks were formed in the aqueous solution of PADP. Results of DSC-TG demonstrated that long carbon chains, aromatic groups and sulfonic groups were incorporated into the PADP polymer, which can lead to a significant increase of the rigidity of molecular chains. Performance evaluation of experiments showed superior properties in regard to temperature-tolerance, shear-tolerance and salt-tolerance. In the Sandpack Flooding Test, PADP brine solution showed a significant increase in EOR at 65°C because of its high thickening capability. All these features indicate that PADP has a potential application in EOR at harsh conditions.

This is a preview of subscription content, access via your institution.

References

  1. Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2013). Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Applied Surface Science, 284, 87–99. DOI: 10.1016/j.apsusc.2013.07.029.

    CAS  Article  Google Scholar 

  2. Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2014a). Screening of microemulsion properties for application in enhanced oil recovery. Fuel, 121, 198–207. DOI: 10.1016/j.fuel.2013.12.051.

    CAS  Article  Google Scholar 

  3. Bera, A., Mandal, A., & Kumar, T. (2014b). Physicochemical characterization of anionic and cationic microemulsions: Water solubilization, particle size distribution, surface tension and structural parameters. Journal of Chemical & Engineering Data, 59, 2490–2498. DOI: 10.1021/je500274r.

    CAS  Article  Google Scholar 

  4. Casarano, R., Bentini, R., Bueno, V. B., Iacovella, T., Monteiro, F. B. F., Iha, F. A. S., Campa, A., Petri, D. F. S., Jaffe, M., & Catalani, L. H. (2009). Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly(isosorbide succinate-b-L-lactide) block copolymers. Polymer, 50, 6218–6227. DOI: 10.1016/j.polymer.2009.10.048.

    CAS  Article  Google Scholar 

  5. Deng, Q. H., Li, H. P., Li, Y., Cao, X. L., Yang, Y., & Song, X. W. (2014). Rheological properties and salt resistance of a hydrophobically associating polyacrylamide. Australian Journal of Chemistry, 67, 1396–1402. DOI: 10.1071/ch14204.

    CAS  Article  Google Scholar 

  6. Eastoe, J., Paul, A., Nave, S., Steytler, D. C., Robinson, B. H., Rumsey, E., Thorpe, M., & Heenan, R. K. (2001). Micellization of hydrocarbon surfactants in supercritical carbon dioxide. Journal of the American Chemical Society, 123, 988–989. DOI: 10.1021/ja005795o.

    CAS  Article  Google Scholar 

  7. Friedrich, T., Tieke, B., Stadler, F. J., & Bailly, C. (2011). Copolymer hydrogels of acrylic acid and a nonionic surfmer: pH-induced switching of transparency and volume and improved mechanical stability. Langmuir, 27, 2997–3005. DOI: 10.1021/la104585k.

    CAS  Article  Google Scholar 

  8. Gao, B. J., Yu, Y. M., & Jiang, L. D. (2007a). Studies on micellar behavior of anionic and surface-active monomers with acrylamide type in aqueous solutions. Colloids and Surfaces A, 293, 210–216. DOI: 10.1016/j.colsurfa.2006.07.034.

    CAS  Article  Google Scholar 

  9. Gao, B. J., Jiang, L. D., & Liu, K. K. (2007b). Microstructure and association property of hydrophobically modified polyacrylamide of a new family. European Polymer Journal, 43, 4530–4540. DOI: 10.1016/j.eurpolymj.2007.03.049.

    CAS  Article  Google Scholar 

  10. Hourdet, D., Ducouret, G., Varghese, S., Badiger, M. V., & Wadgaonkar, P. P. (2013). Thermodynamic behavior of hydrophobically modified polyacrylamide containing random distribution of hydrophobes: Experimental and theoretical investigations. Polymer, 54, 2676–2689. DOI: 10.1016/j.polymer.2013.03.039.

    CAS  Article  Google Scholar 

  11. Jiménez-Regalado, E., Selb, J., & Candau, F. (2000). Effect of surfactant on the viscoelastic behavior of semidilute solutions of multisticher associating polyacrylamides. Langmuir, 16, 8611–8621. DOI: 10.1021/la000168y.

    Article  Google Scholar 

  12. Koromilas, N. D., Lainioti, G. C., Oikonomou, E. K., Bokias, G., & Kallitsis, J. K. (2014). Synthesis and self-association in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinylbenzyl chloride. European Polymer Journal, 54, 39–51. DOI: 10.1016/j.eurpolymj.2014.02.009.

    CAS  Article  Google Scholar 

  13. Ma, L. H., Guo, Y. J., Feng, R. S., Xiang, P. P., & Li, C. H. (2014). Synthesis and micellar behaviors of an anionic polymerizable surfactant. Journal of the Chinese Chemical Society, 61, 583–588. DOI: 10.1002/jccs.201300372.

    CAS  Article  Google Scholar 

  14. Mandal, A., Samanta, A., Bera, A., & Ojha, K. (2010). Characterization of oil-water emulsion and its use in enhanced oil recovery. Industrial & Engineering Chemistry Research, 49, 12756–12761. DOI: 10.1021/ie101589x.

    CAS  Article  Google Scholar 

  15. Morales, D. V., & Rivas, B. L. (2015). Poly(2-acrylamidoglycolic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid) and poly(2-acrylamidoglycolic acid-co-4-styrene sodium sulfonate): synthesis, characterization, and properties for use in the removal of Cd(II), Hg(II), Zn(II) and Pb(II). Polymer Bulletin, 72, 339–352. DOI: 10.1007/s00289-014-1277-0.

    CAS  Article  Google Scholar 

  16. Nishida, I., Okaue, Y., & Yokoyama, T. (2010). Effects of adsorption conformation on the dispersion of aluminum hydroxide particles by multifunctional polyelectrolytes. Langmuir, 26, 11663–11669. DOI: 10.1021/la1008522.

    CAS  Article  Google Scholar 

  17. Patterson, J. P., Kelley, E. G., Murphy, R. P., Moughton, A. O., Robin, M. P., Lu, A., Colombani, O., Chassenieux, C., Cheung, D., Sullivan, M. O., Epps, T. H., & O’Reilly, R. K. (2013). Structural characterization of amphiphilic homopolymer micelles using light scattering, SANS and Cryo-TEM. Macromolecules, 46, 6319–6325. DOI: 10.1021/ma4007544.

    CAS  Article  Google Scholar 

  18. Pu, W. F., Liu, R., Wang, K. Y., Li, K. X., Yan, Z. P., Li, B., & Zhao, L. (2015). Water-soluble core-shell hyperbranched polymers for enhanced oil recovery. Industrial & Engineering Chemistry Research, 54, 798–807. DOI: 10.1021/ie5039693.

    CAS  Article  Google Scholar 

  19. Roy, A., Comesse, S., Grisel, M., Hucher, N., Souguir, Z., & Renou, F. (2014). Hydrophobically modified xanthan: An amphiphilic but not associative polymer. Biomacromolecules, 15, 1160–1170. DOI: 10.1021/bm4017034.

    CAS  Article  Google Scholar 

  20. Samanta, A., Bera, A., Ojha, K., & Mandal, A. (2010). Effects of alkali, salts and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. Journal of Chemical & Engineering Data, 55, 4315–4322. DOI: 10.1021/je100458a.

    CAS  Article  Google Scholar 

  21. Samanta, A., Ojha, K., & Mandal, A. (2011). Interactions between acidic crude oil and alkali and their effects on enhanced oil recovery. Energy & Fuels, 25, 1642–1649. DOI: 10.1021/ef101729f.

    CAS  Article  Google Scholar 

  22. Siano, D. B., Bock, J., Myer, P., & Valint, P. L. (1989). Fluorescence and light scattering from water-soluble hydrophobically associating polymers. In J. E. Glass (Ed.), Polymers in aqueous media (pp. 425–435). Washington, DC, USA: American Chemical Society. DOI: 10.1021/ba-1989-0223.ch023.

    Chapter  Google Scholar 

  23. Stähler, K., Selb, J., Barthelemy, P., Pucci, B., & Candau, F. (1998). Novel hydrocarbon and fluorocarbon polymerizable surfactants: Synthesis, characterization and mixing behavior. Langmuir, 14, 4765–4775. DOI: 10.1021/la980245d.

    Article  Google Scholar 

  24. Thomas, S. (2008). Enhanced oil recovery — an overview. Oil & Gas Science and Technology, 63, 9–19. DOI: 10.2516/ogst:2007060.

    CAS  Article  Google Scholar 

  25. Veerabhadrappa, S. K., Doda, A., Trivedi, J. J., & Kuru, E. (2013). On the effect of polymer elasticity on secondary and tertiary oil recovery. Industrial & Engineering Chemistry Research, 52, 18421–18428. DOI: 10.1021/ie4026456.

    CAS  Article  Google Scholar 

  26. Volpert, E., Selb, J., Candau, F., Green, N., Argillier, J. F., & Audibert, A. (1998). Adsorption ofhydrophobically associating polyacrylamides on clay. Langmuir, 14, 1870–1879. DOI: 10.1021/la970358h.

    CAS  Article  Google Scholar 

  27. Wu, S. H., Shanks, R. A., & Bryant, G. (2006). Properties of hydrophobically modified polyacrylamide with low molecular weight and interaction with surfactant in aqueous solution. Journal of Applied Polymer Science, 100, 4348–4360. DOI: 10.1002/app.23282.

    CAS  Article  Google Scholar 

  28. Zhong, C. R., Luo, P. Y., Ye, Z. B., & Chen, H. (2009). Characterization and solution properties of a novel water-soluble terpolymer for enhanced oil recovery. Polymer Bulletin, 62, 79–89. DOI: 10.1007/s00289-008-1007-6.

    CAS  Article  Google Scholar 

  29. Zhou, C. J., Yang, W. M., Yu, Z. N., Zhou, W. L., Xia, Y. M., Han, Z. W., & Wu, Q. L. (2011). Synthesis and solution properties of novel comb-shaped acrylamide copolymers. Polymer Buletin, 66, 407–417. DOI: 10.1007/s00289-010-0360-4.

    CAS  Article  Google Scholar 

  30. Zhu, Z. Y., González, Y. I., Xu, H. X., Kaler, E. W., & Liu, S. Y. (2006). Polymerization of anionic wormlike micelles. Langmuir, 22, 949–955. DOI: 10.1021/la052384i.

    CAS  Article  Google Scholar 

  31. Zhu, Y. C., Lowe, A. B., & Roth, P. J. (2014). Postpolymerization synthesis of (bis)amide (co)polymers: Thermoresponsive behavior and self-association. Polymer, 55, 4425–4431. DOI: 10.1016/j.polymer.2014.07.003.

    CAS  Article  Google Scholar 

  32. Zou, C. J., Zhao, P. W., Hu, X. Z., Yan, X. L., Zhang, Y. Y., Wang, X. J., Song, R. T., & Luo, P. Y. (2013). β-Cyclodextrin-functionalized hydrophobically associating acrylamide copolymer for enhanced oil recovery. Energy & Fuels, 27, 2827–2834. DOI: 10.1021/ef302152t.

    CAS  Article  Google Scholar 

  33. Zou, C. J., Gu, T., Xiao, P. F., Ge, T. T., Wang, M., & Wang, K. (2014). Experimental study of cucurbit[7]uril derivatives modified acrylamide polymer for enhanced oil recovery. Industrial & Engineering Chemistry Research, 53, 7570–7578. DOI: 10.1021/ie4037824.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-Chao Du.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, JS., Du, WC., Pu, XL. et al. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery. Chem. Pap. 69, 1598–1607 (2015). https://doi.org/10.1515/chempap-2015-0185

Download citation

Keywords

  • 1-(4-dodecyloxy-phenyl)-propenone
  • associating
  • acrylamide
  • enhanced oil recovery
  • hydrophobically associating polymer