Skip to main content

Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin

Abstract

A benzophenone-containing SET-LRP initiator based on renewable and abundant cardanol was synthesised in 71 % yield using the selective etherification reaction. Next, methyl methacrylate (MMA) as a monomer was polymerised under SET-LRP conditions using the newly prepared initiator to prepare cardanol-end poly(methyl methacrylate) (PMMA). The kinetic results of the polymerisation indicated that the reaction was controllable when the monomer conversion was lower than approximately 50 %, and the molecular masses of PMMA measured by GPC were higher than the theoretical values while the monomer conversion was more than 50 %. In addition, most of the carbon-carbon double bonds of the side hydrocarbon chain of the end-cardanol group in the PMMA were kept intact from 1H NMR spectrum characterisation. Accordingly, when the cardanol-end PMMA together with a tertiary amine-containing cardanol derivative was irradiated by UV light, the corresponding UV-cured resin was obtained. The chemical resistance and hardness of the UV-cured film were enhanced with the increasing irradiation time.

This is a preview of subscription content, access via your institution.

References

  1. Balachandran, V. S., Jadhav, S. R., Vemula, P. K., & John, G. (2013). Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chemical Society Reviews, 42, 427–438. DOI: 10.1039/c2cs35344j.

    CAS  Article  Google Scholar 

  2. Bloise, E., Becerra-Herrera, M., Mele, G., Sayago, A., Carbone, L., D’Accolti, L., Mazzetto, S. E., & Vasapollo, G. (2014). Sustainable preparation of cardanol-based nanocarriers with embedded natural phenolic compounds. ACS Sustainable Chemistry & Engineering, 2, 1299–1304. DOI: 10.1021/sc500123r.

    CAS  Article  Google Scholar 

  3. Chen, G. Q., & Patel, M. K. (2012). Plastics derived from biological sources: Present and future: A technical and environmental review. Chemical Reviews, 112, 2082–2099. DOI: 10.1021/cr200162d.

    CAS  Article  Google Scholar 

  4. Cheng, C. J., Zha, J. W., Liu, Z. B., Shen, L., Sun, J., & Liu, Y. J. (2012). Synthesis and UV-curing properties of a photo-active cardanol derivative. Chinese Journal of Applied Chemistry, 29, 392–396. (in Chinese)

    CAS  Google Scholar 

  5. Cheng, C. J., Fu, Q. L., Bai, X. X., Liu, S. J., Shen, L., Fan, W. Q., & Li, H. X. (2013a). Facile synthesis of gemini surface-active ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation. Chemical Papers, 67, 336–341. DOI: 10.2478/s11696-012-0271-y.

    CAS  Article  Google Scholar 

  6. Cheng, C., Bai, X., Liu, S., Huang, Q., Tu, Y., Wu, H., & Wang, X. (2013b). UV cured polymer based on a renewable cardanol derived RAFT agent. Journal of Polymer Research, 20, article no. 197. DOI: 10.1007/s10965-013-0197-2.

  7. Cheng, C., Bai, X., Zhang, X., Chen, M., Huang, Q., Hu, Z., & Tu, Y. (2014a). Facile synthesis of block copolymers from a cinnamate derivative by combination of AGET ATRP and click chemistry. Macromolecular Research, 22, 1306–1311. DOI: 10.1007/s13233-014-2180-0.

    CAS  Article  Google Scholar 

  8. Cheng, C. J., Bai, X. X., Fan, W. Q., Wu, H. M., Shen, L., Huang, Q. H., & Tu, Y. M. (2014b). Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing. Chemical Papers, 68, 136–144. DOI: 10.2478/s11696-013-0420-y.

    CAS  Article  Google Scholar 

  9. Chu, D. S. H., Schellinger, J. G., Shi, J., Convertine, A. J., Stayton, P. S., & Pun, S. H. (2012). Application of living free radical polymerization for nucleic acid delivery. Accounts of Chemical Research, 45, 1089–1099. DOI: 10.1021/ar200242z.

    CAS  Article  Google Scholar 

  10. Dadashi-Silab, S., Bildirir, H., Dawson, R., Thomas, A., & Yagci, Y. (2014). Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations. Macromolecules, 47, 4607–4614. DOI: 10.1021/ma501001m.

    CAS  Article  Google Scholar 

  11. Edlund, U., & Albertsson, A. C. (2012). SET-LRP goes “green”: Various hemicellulose initiating systems under non-inert conditions. Journal of Polymer Science: Part A: Polymer Chemistry, 50, 2650–2658. DOI: 10.1002/pola.26041.

    CAS  Article  Google Scholar 

  12. Edlund, U., Rodriguez-Emmenegger, C., Brynda, E., & Albertsson, A. C. (2012). Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry, 3, 2920–2927. DOI: 10.1039/c2py20421e.

    CAS  Article  Google Scholar 

  13. Jing, R., Wang, G., Zhang, Y., & Huang, J. (2011). One-pot synthesis of PS-b-PEO-b-PtBA triblock copolymers via combination of SET-LRP and “click” chemistry using copper(0)/PMDETA as catalyst system. Macromolecules, 44, 805–810. DOI: 10.1021/ma102621k.

    CAS  Article  Google Scholar 

  14. Konkolewicz, D., Wang, Y., Zhong, M., Krys, P., Isse, A. A., Gennaro, A., & Matyjaszewski, K. (2013). Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules, 46, 8749–8772. DOI: 10.1021/ma401243k.

    CAS  Article  Google Scholar 

  15. Konkolewicz, D., Wang, Y., Krys, P., Zhong, M., Isse, A. A., Gennaro, A., & Matyjaszewski, K. (2014). SARA ATRP or SET-LRP. End of controversy? Polymer Chemistry, 5, 4396–4417. DOI: 10.1039/c4py00149d.

    Article  Google Scholar 

  16. Król, P., & Chmielarz, P. (2014). Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials. Progress in Organic Coatings, 77, 913–948. DOI: 10.1016/j.porgcoat.2014.01.027.

    Article  Google Scholar 

  17. Lee, S. K., Yoon, S. H., Chung, I., Hartwig, A., & Kim, B. K. (2011). Waterborne polyurethane nanocomposites having shape memory effects. Journal of Polymer Science: Part A: Polymer Chemistry, 49, 634–641. DOI: 10.1002/pola.24473.

    CAS  Article  Google Scholar 

  18. Matyjaszewski, K., Shipp, D. A., Wang, J. L., Grimaud, T., & Patten, T. E. (1998). Utilizing halide exchange to improve control of atom transfer radical polymerization. Macro-molecules, 31, 6836–6840. DOI: 10.1021/ma980476r.

    CAS  Article  Google Scholar 

  19. Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921–2990. DOI: 10.1021/cr940534g.

    CAS  Article  Google Scholar 

  20. Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macro-molecules, 45, 4015–4039. DOI: 10.1021/ma3001719.

    CAS  Article  Google Scholar 

  21. Matyjaszewski, K., & Tsarevsky, N. V. (2014). Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 136, 6513–6533. DOI: 10.1021/ja408069v.

    CAS  Article  Google Scholar 

  22. Mele, G., & Vasapollo, G. (2008). Fine chemicals and new hybrid materials from cardanol. Mini-Reviews in Organic Chemistry, 5, 243–253. DOI: 10.2174/157019308785161611.

    CAS  Article  Google Scholar 

  23. Miller, S. A. (2013). Sustainable polymers: Opportunities for the next decade. ACS Macro Letters, 2, 550–554. DOI: 10.1021/mz400207g.

    CAS  Article  Google Scholar 

  24. Modiba, E., Osifo, P., & Rutto, H. (2014). The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil. Chemical Papers, 68, 1341–1349. DOI: 10.2478/s11696-014-0583-1.

    CAS  Article  Google Scholar 

  25. Percec, V., Guliashvili, T., Ladislaw, J. S., Wistrand, A., Stjerndahl, A., Sienkowska, M. J., Monteiro, M. J., & Sahoo, S. (2006). Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25°C. Journal of the American Chemical Society, 128, 14156–14165. DOI: 10.1021/ja065484z.

    CAS  Article  Google Scholar 

  26. Rosen, B. M., & Percec, V. (2009). Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chemical Reviews, 109, 5069–5119. DOI: 10.1021/cr900024j.

    CAS  Article  Google Scholar 

  27. Saghatchi, F., Ahmadi, E., Mohamadnia, Z., Hajifatheali, H., Tabebordbar, H., & Karimi, F. (2014). Cu-based atom transfer radical polymerization of methyl methacrylate using a novel tridentate ligand with mixed donor atoms. Chemical Papers, 68, 1555–1560. DOI: 10.2478/s11696-014-0613-z.

    CAS  Article  Google Scholar 

  28. Santeusanio, S., Attanasi, O. A., Majer, R., Cangiotti, M., Fattori, A., & Ottaviani, M. F. (2013). Effect of hydrogenated cardanol on the structure of model membranes studied by EPR and NMR. Langmuir, 29, 11118–11126. DOI: 10.1021/la402008n.

    CAS  Article  Google Scholar 

  29. Suresh, K. I. (2013). Rigid polyurethane foams from cardanol: Synthesis, structural characterization, and evaluation of polyol and foam properties. ACS Sustainable Chemistry & Engineering, 1, 232–242. DOI: 10.1021/sc300079z.

    CAS  Article  Google Scholar 

  30. Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 36, 455–567. DOI: 10.1016/j.progpolymsci.2010.10.002.

    CAS  Article  Google Scholar 

  31. Temel, G., Karaca, N., & Arsu, N. (2010). Synthesis of main chain polymeric benzophenone photoinitiator via thiol-ene click chemistry and its use in free radical polymerization. Journal of Polymer Science: Part A: Polymer Chemistry, 48, 5306–5312. DOI: 10.1002/pola.24330.

    CAS  Article  Google Scholar 

  32. Ugur, M. H., Kmc, H., Berkem, M. L., Güngör, A. (2014). Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chemical Papers, 68, 1561–1572. DOI: 10.2478/s11696-014-0611-1.

    CAS  Article  Google Scholar 

  33. Vennestrøm, P. N. R., Osmundsen, C. M., Christensen, C. H., & Taarning, E. (2011). Beyond petrochemicals: The renewable chemicals industry. Angewandte Chemie International Edition, 50, 10502–10509. DOI: 10.1002/anie.201102117.

    Article  Google Scholar 

  34. Voirin, C., Caillol, S., Sadavarte, N. V., Tawade, B. V., Boutevin, B., & Wadgaonkar, P. P. (2014). Functionalization of cardanol: towards biobased polymers and additives. Polymer Chemistry, 5, 3142–3162. DOI: 10.1039/c3py01194a.

    CAS  Article  Google Scholar 

  35. Wang, W., Zhang, Z., Cheng, Z., Zhu, J., Zhou, N., & Zhu, X. (2012). Favorable hydrogen bonding in room-temperature Cu(0)-mediated controlled radical polymerization of 4-vinylpyridine. Polymer Chemistry, 3, 2731–2734. DOI: 10.1039/c2py20283b.

    CAS  Article  Google Scholar 

  36. Wang, W., Zhao, J., Zhang, W., Zhu, J., Zhang, Z., & Zhu, X. (2013). Ligand-free SET-DTLRP of MMA at room temperature. Journal of Polymer Science, Part A: Polymer Chemistry, 51, 1872–1879. DOI: 10.1002/pola.26570.

    CAS  Article  Google Scholar 

  37. Yang, Z., Wicks, D. A., Yuan, J., Pu, H., & Liu, Y. (2010). Newly UV-curable polyurethane coatings prepared by multifunctional thiol- and ene-terminated polyurethane aqueous dispersions: Photopolymerization properties. Polymer, 51, 1572–1577. DOI: 10.1016/j.polymer.2010.02.003.

    CAS  Article  Google Scholar 

  38. Yao, K., & Tang, C. (2013). Controlled polymerization of next-generation renewable monomers and beyond. Macro-molecules, 46, 1689–1712. DOI: 10.1021/ma3019574.

    CAS  Article  Google Scholar 

  39. Zhang, X. F., Wu, Y., Huang, J., Miao, X. L., Zhang, Z. B., & Zhu, X. L. (2013). Copper(0)-mediated radical polymerization of styrene at room temperature. Chinese Journal of Polymer Science, 31, 702–712. DOI: 10.1007/s10118-013-1243-6.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chuan-Jie Cheng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, CJ., Zhang, X., Bai, XX. et al. Synthesis of cardanol-based photo-active SET-LRP initiator and its application to preparation of UV-cured resin. Chem. Pap. 69, 1608–1616 (2015). https://doi.org/10.1515/chempap-2015-0176

Download citation

Keywords

  • cardanol
  • SET-LRP
  • photo-active
  • UV-cured resin