Skip to main content
Log in

Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The ligand N2, N6-bis(2-hydroxyethyl)pyridine-2,6-dicarboxamide (L or BHPC) was synthesised by modification of 2,6-pyridinedicarboxylic acid then used to construct the lanthanide-based mesoporous material Tb-BHPC-SBA-15. In the structure of the resulting Tb-BHPC-SBA-15, lanthanide ions were chelated by the BHPC ligand and the Tb-BHPC complexes were anchored into the SBA-15 host formed by the reaction between the hydroxyl group and the active Si-OH. The mesoporous material Tb-BHPC-SBA-15 was characterised by UV, small-angle X-ray diffraction (SAXRD) patterns, nitrogen adsorption/desorption isotherms and fluorescence spectra. The results indicate that the ligand and lanthanide ions were introduced into the SBA-15 host and the mesoporous material Tb-BHPC-SBA-15 exhibited the characteristic luminescence of Tb3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akitsu, T., & Einaga, Y. (2007). Structure of cyano-bridged Eu(III)-Co(III) bimetallic assembly and its application to photophysical verification of photomagnetic phenomenon. Chemical Papers, 61, 194–198. DOI: 10.2478/s11696-007-0019-2.

    Article  CAS  Google Scholar 

  • Armelao, L., Bottaro G., Quici, S., Cavazzini, M., Raffo, M. C., Barigelletti, F., & Accorsi, G. (2007). Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(III) complexes. Chemical Communications, 28, 2911–2913. DOI: 10.1039/b702238g.

    Article  Google Scholar 

  • Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M., & Tondello, E. (2010). Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coordination Chemistry Reviews, 254, 487–505. DOI: 10.1016/j.ccr.2009.07.025.

    Article  CAS  Google Scholar 

  • Armelao, L., Bottaro, G., Quici, S., Cavazzini, M., Scalera, C., & Accorsi, G. (2011). Synthesis and photophysical characterization of highly luminescent silica films doped with substituted 2-hydroxyphthalamide (IAM) terbium complexes. Dalton Transactions, 2011, 11530–11538. DOI: 10.1039/c1dt11131k.

    Article  Google Scholar 

  • Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109, 4283–4374. DOI: 10.1021/cr8003983.

    Article  CAS  Google Scholar 

  • Bulatovic, M. Z., Maksimović-Ivanić, D., Bensing, C., Gómez-Ruiz, S., Steinborn, D., Schmidt, H., Mojić, M., Korać, A., Golić, I., Pérez-Quintanilla, D., Momčilović, M., Mijatović, S., & Kaluđerović, G. N. (2014). Organotin(IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angewandte Chemie International Edition, 53, 5982–5987. DOI: 10.1002/anie.201400763.

    Article  CAS  Google Scholar 

  • Bünzli, J. C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 2005, 1048–1077. DOI: 10.1039/b406082m.

    Article  Google Scholar 

  • Bünzli, J. C. G. (2006). Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 39, 53–61. DOI: 10.1021/ar0400894.

    Article  Google Scholar 

  • Buünzli, J. C. G. (2010). Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 110, 2729–2755. DOI: 10.1021/cr900362e.

    Article  Google Scholar 

  • Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., & Ribeiro, S. J. L. (2009). Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future. Advanced Materials, 21, 509–534. DOI: 10.1002/adma.200801635.

    Article  CAS  Google Scholar 

  • Ceballos-Torres, J., Virag, P., Cenariu, M., Prashar, S., Fajardo, M., Fischer-Fodor, E., & Gómez-Ruiz, S. (2014). Anti-cancer applications of titanocene-functionalised nanostructured systems: An insight into cell death mechanisms. Chemistry — A European Journal, 20, 10811–10828. DOI: 10.1002/chem.201400300.

    Article  CAS  Google Scholar 

  • DeOliveira, E., Neri, C. R., Serra, O. A., & Prado, A. G. S. (2007). Antenna effect in highly luminescent Eu3+ anchored in hexagonal mesoporous silica. Chemistry of Materials, 19, 5437–5442. DOI: 10.1021/cm701997y.

    Article  CAS  Google Scholar 

  • Eliseeva, S. V., & Buünzli, J. C. G. (2010). Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews, 2010, 189–227. DOI: 10.1039/b905604c.

    Article  Google Scholar 

  • Enthaler, S., Spilker, B., Erre, G., Junge, K., Tse, M. K., & Beller, M. (2008). Biomimetic transfer hydrogenation of 2-alkoxy-and 2-aryloxyketones with iron-porphyrin catalysts. Tetrahedron, 64, 3867–3876. DOI: 10.1016/j.tet.2008.01.083.

    Article  CAS  Google Scholar 

  • Feng, J., & Zhang, H. J. (2013). Hybrid materials based on lanthanide organic complexes: a review. Chemical Society Reviews, 2013, 387–410. DOI: 10.1039/c2cs35069f.

    Article  Google Scholar 

  • García-Peñas, A., Gómez-Ruiz, S., Pérez-Quintanilla, D., Paschke, R., Sierra, I., Prashar, S., del Hierro, I., & Kaluđerović, G. N. (2012). Study of the cytotoxicity and particle action in human cancer cells of titanocene-functionalized materials with potential application against tumors. Journal of Inorganic Biochemistry, 106, 100–110. DOI: 10.1016/j.jinorgbio.2011.09.033.

    Article  Google Scholar 

  • Goodwin, G. B., & Kenney, M. E. (1990). A new route to alkoxysilanes and alkoxysiloxanes of use for the preparation of ceramics by the sol-gel technique. Inorganic Chemistry, 29, 1216–1220. DOI: 10.1021/ic00331a021.

    Article  CAS  Google Scholar 

  • Gudasi, K., Vadavi, R., Shenoy, R., Patil, M., Patil, S. A., & Nethaji, M. (2005). Transition metal complexes of a tridentate ligand bearing two pendant pyridine bases: The X-ray crystal structure of pentacoordinate copper(II) complex. Inorganica Chimica Acta, 358, 3799–3806. DOI: 10.1016/j.ica.2005.07.033.

    Article  CAS  Google Scholar 

  • Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109, 4921–4960. DOI: 10.1021/cr900134a.

    Article  CAS  Google Scholar 

  • Horňáček, M., Hudec, P., & Smiešková, A. (2009). Synthesis and characterization of mesoporous molecular sieves. Chemical Papers, 63, 689–697. DOI: 10.2478/s11696-009-0066-y.

    Google Scholar 

  • Hu, Q. Y., Hampsey, J. E., Jiang, N., Li, C. J., & Lu, Y. F. (2005). Surfactant-templated organic functionalized mesoporous silica with phosphino ligands. Chemistry of Materials, 17, 1561–1569. DOI: 10.1021/cm0491983.

    Article  CAS  Google Scholar 

  • Kaluđerović, G. N., Pérez-Quintanilla, D., Sierra, I., Prashar, S., del Hierro, I., Žižak, Z., Juranić, Z. D., Fajardo, M., & Gómez-Ruiz, S. (2010). Study of the influence of the metal complex on the cytotoxic activity of titanocenefunctionalized mesoporous materials. Journal of Materials Chemistry, 20, 806–814. DOI: 10.1039/b919269g.

    Article  Google Scholar 

  • Kido, J., & Okamoto, Y. (2002). Organo lanthanide metal complexes for electroluminescent materials. Chemical Reviews, 102, 2357–2368. DOI: 10.1021/cr010448y.

    Article  CAS  Google Scholar 

  • Li, Y. J., Yan, B., & Li, Y. (2010). Luminescent lanthanide (Eu3+, Tb3+) ternary mesoporous hybrids with functionalized β-diketones (TTA, DBM) covalently linking SBA-15 and 2,2’-bipyridine (bpy). Microporous and Mesoporous Materials, 131, 82–88. DOI: 10.1016/j.micromeso.2009.12.006.

    Article  CAS  Google Scholar 

  • Li, Y. J., Yan, B., & Wang, L. (2011). Calix[4]arene derivative functionalized lanthanide (Eu, Tb) SBA-15 mesoporous hybrids with covalent bonds: assembly, characterization and photoluminescence. Dalton Transactions, 2011, 6722–6731. DOI: 10.1039/c1dt10190k.

    Article  Google Scholar 

  • Pascanu, V., Hansen, P. R., Gómez, A. B., Ayats, C., Platero-Prats, A., Johansson, M. J., Pericàs, M. À., & Martín-Matute, B. (2015). Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem, 8, 123–130. DOI: 10.1002/cssc.201402858.

    Article  CAS  Google Scholar 

  • Peng, C. Y., Zhang, H. J., Yu, J. B., Meng, Q. G., Fu, L. S., Li, H. R., Sun, L. N., & Guo, X. M. J. (2005a). Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. The Journal of Physical Chemistry B, 109, 15278–15287. DOI: 10.1021/jp051984n.

    Article  CAS  Google Scholar 

  • Peng, C. Y., Zhang, H. J., Meng, Q. G., Li, H. R., Yu, J., B., Guo, F. J., & Sun, L. N. (2005b). Synthesis and luminescence properties of SBA-15 functionalized with covalently bonded ternary europium complex. Inorganic Chemistry Communications, 8, 440–443. DOI: 10.1016/j.inoche.2005.01.026.

    Article  CAS  Google Scholar 

  • Pérez-Quintanilla, D., Gómez-Ruiz, S., Žižak, Z., Sierra, I., Prashar, S., del Hierro, I., Fajardo, M., Juranić, Z. D., & Kaluđerović, G. N., (2009). A new generation of anticancer drugs: Mesoporous materials modified with titanocene complexes. Chemistry — A European Journal, 15, 5588–5597. DOI: 10.1002/chem.200900151.

    Article  Google Scholar 

  • Quici, S., Cavazzini, M., Raffo, M. C., Armelao, L., Bottaro, G., Accorsi, G., Sabatini, C., & Barigelletti, F. (2006). Highly homogeneous, transparent and luminescent SiO2 glassy layers containing a covalently bound tetraazacyclododecanetriacetic acid-Eu(III)-acetophenone complex. Journal of Materials Chemistry, 16, 741–747. DOI: 10.1039/b514409d.

    Article  CAS  Google Scholar 

  • Sabbatini, N., Guardigli, M., & Lehn, J. M. (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews, 123, 201–228. DOI: 10.1016/0010-8545(93)85056-a.

    Article  CAS  Google Scholar 

  • Sanchez, C., & Ribot, F. (1994). Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New Journal of Chemistry, 18, 1007–1047.

    CAS  Google Scholar 

  • Shimojima, A., Liu, Z., Ohsuna, T., Terasaki, O., & Kuroda, K. (2005). Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures. Journal of the American Oil Chemists Society, 127, 14108–14116. DOI: 10.1021/ja0541736.

    Article  CAS  Google Scholar 

  • Singh, L., & Singh, R. (2014). Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea. Chemical Papers, 68, 223–232. DOI: 10.2478/s11696-013-0446-1.

    CAS  Google Scholar 

  • Sun, L. N., Zhang, Y., Yu, J. B., Yu, S. Y., Dang, S., Peng, C. Y., & Zhang, H. J. (2008). Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate) lanthanide(III) complexes. Microporous and Mesoporous Materials, 115, 535–540. DOI: 10.1016/j.micromeso.2008.02.031.

    Article  CAS  Google Scholar 

  • Tang, R. R., Gu, G. L., & Zhao, Q. (2008). Synthesis of Eu(III) and Tb(III) complexes with novel pyridine dicarboxamide derivatives and their luminescence properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 371–376. DOI: 10.1016/j.saa.2007.12.047.

    Article  Google Scholar 

  • Tiseanu, C., Kumke, M. U., Parvulescu, V. I., Koti, A. S. R., Gagea, B. C., & Martens, J. A. (2007). Time-resolved photoluminescence of terbium-doped microporous-mesoporous Zeotile-1 materials. Journal of Photochemistry and Photobiology A: Chemistry, 187, 299–304. DOI: 10.1016/j.jphotochem.2006.10.026.

    Article  CAS  Google Scholar 

  • Tiseanu, C., & Lórenz-Fonfria, V. A. (2010). Time-resolved photoluminescence spectra, lifetime distributions and decay-associated spectra of lanthanide’s exchanged microporous-mesoporous materials. Journal of Nanoscience and Nanotechnology, 10, 2803–2810. DOI: 10.1166/jnn.2010.1426.

    Article  CAS  Google Scholar 

  • Yan, B., Zhou, L., & Li, Y. (2009). Hydrothermal synthesis, physical characterization and photoluminescence of homologous-SBA-15 fabricated with Eu3+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 147–153. DOI: 10.1016/j.colsurfa.2009.09.026.

    Article  CAS  Google Scholar 

  • Yan, B. (2012). Recent progress in photofunctional lanthanide hybrid materials. RSC Advances, 2012, 9304–9324. DOI: 10.1039/c2ra20976d.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Shan Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhou, JJ., Zuo, SY. et al. Synthesis of lanthanide-based SBA-15 mesoporous hybrids by a novel route. Chem. Pap. 69, 1625–1632 (2015). https://doi.org/10.1515/chempap-2015-0172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0172

Keywords

Navigation