Advertisement

Chemical Papers

, Volume 69, Issue 11, pp 1500–1511 | Cite as

Efficient synthesis of bis-isoxazole ethers via 1,3-dipolar cycloaddition catalysed by Zn/Zn2+ and their antifungal activities

  • Da-Wei Zhang
  • Feng Lin
  • Bo-Chao Li
  • Hong-Wei Liu
  • Tian-Qi Zhao
  • Yu-Min Zhang
  • Qiang GuEmail author
Original Paper

Abstract

An efficient method was developed for synthesising isoxazoles. A series of novel bis-isoxazole ether compounds VI, VII and VIII were synthesised starting from different substituted aldehydes (I) via a 1,3-dispolar cycloaddition using Zn/Zn2+ as a catalyst; these were characterised by FT-IR, HRMS, 1H NMR and 13C NMR spectroscopy. In addition, the antimicrobial properties of the synthesised products were investigated. The synthesised compounds exhibited significant antifungal activities in comparison with the standard drugs, fluconazole and itraconazole. It was found that Candida albicans was sensitive to 2-substituted phenyl bis-isoxazole ethers bearing pyridyl.

Keywords

bis-isoxazole ether 1,3-dispolar cycloaddition Zn/Zn2+ anti-fungal activity nitrile oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2017_690111500_MOESM1_ESM.doc (2.2 mb)
Supplementary material, approximately 2322 KB.

References

  1. Barbachyn, M. R., Cleek, G. J., Dolak, L. A., Garmon, S. A., Morris, J., Seest, E. P., Thomas, R. C., Toops, D. S., Watt, W., Wishka, D. G., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D., Yagi, B. H., Adams, W. J., Friis, J. M., Slatter, J. G., Sams, J. P., Oien, N. L., Zaya, M. J., Wienkers, L. C., & Wynalda, M. A. (2003). Identification of phenylisoxazolines as novel and viable antibacterial agents active against gram-positive pathogens. Journal of Medicinal Chemistry, 46 284–302. DOI:  10.1021/jm020248u.CrossRefGoogle Scholar
  2. Bhosale, S., Kurhade, S., Prasad, U. V., Palle, V. P., & Bhuniya, D. (2009). Efficient synthesis of isoxazoles and isoxazolines from aldoximes using Magtrieve™ (CrO2). Tetrahedron Letters, 50 3948–3951. DOI:  10.1016/j.tetlet.2009.04.073.CrossRefGoogle Scholar
  3. Biesinger, M. C., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2010). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 257 887–898. DOI:  10.1016/j.apsusc.2010.07.086.CrossRefGoogle Scholar
  4. Chen, M., Wang, X., Yu, Y. H., Pei, Z. L., Bai, X. D., Sun, C., Huang, R. F., & Wen, L. S. (2000). X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science, 158 134–140. DOI:  10.1016/s0169-4332(99)00601-7.CrossRefGoogle Scholar
  5. Cuadrado, P., González-Nogal, A. M., & Valero, R. (2002). Regiospecific synthesis of 5-silyl azoles. Tetrahedron, 58 4975–4980. DOI:  10.1016/s0040-4020(02)00386-1.CrossRefGoogle Scholar
  6. Daliboyena, S., & Nefzi, A. (2012). Solid phase synthesis of isoxazole and isoxazoline-carboxamides via [2+3]-dipolar cycloaddition using resin-bound alkynes or alkenes. Tetrahedron Letters, 53 2096–2099. DOI:  10.1016/j.tetlet.2012.02.041.CrossRefGoogle Scholar
  7. Gagneux, A. R. (1965). Synthesis of ibotenic acid. Tetrahedron Letters, 25 2081–2084. DOI:  10.1016/s0040-4039(00)90158-8.CrossRefGoogle Scholar
  8. Gothelf, K. V., & Jørgensen, K. A. (1998). Asymmetric 1,3-dipolar cycloaddition reactions. Chemical Reviews, 98 863–910. DOI:  10.1021/cr970324e.CrossRefGoogle Scholar
  9. Grecian, S., & Fokin, V. V. (2008). Ruthenium-catalyzed cycloaddition of nitrile oxides and alkynes: Practical synthesis of isoxazoles. Angewandte Chemie International Edition, 47 8285–8287. DOI:  10.1002/anie.200801920.CrossRefGoogle Scholar
  10. Grischenko, L. A., Parshina, L. N., Kanitskaya, L. V., Larina, L. I., Novikova, L. N., & Trofimov, B. A. (2013). Propargylation of arabinogalactan with propargyl halides—a facile route to new functionalized biopolymers. Carbohydrate Research, 376 7–14. DOI:  10.1016/j.carres.2013.04.031.CrossRefGoogle Scholar
  11. Günanger, P., Vita-Finzi, P., Taylor, E. C., & Weissberger, A. (1991). The chemistry of heterocyclic compounds: Isoxazoles. New York, NY, USA: Wiley.Google Scholar
  12. Hansen, T. V., Wu, P., & Fokin, V. V. (2005). One-pot copper(I)-catalyzed synthesis of 3,5-disubstituted isoxazoles. Journal of Organic Chemistry, 70 7761–7764. DOI:  10.1021/jo050163b.CrossRefGoogle Scholar
  13. Heravi, M. M., Derikvand, F., Haeri, A., Oskooie, H. A., & Bamoharram, F. F. (2008). Heteropolyacids as green and reusable catalysts for the synthesis of isoxazole derivatives. Synthetic Communications, 38 135–140. DOI:  10.1080/00397910701651326.CrossRefGoogle Scholar
  14. Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B., & Fokin, V. V. (2005). Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. Journal of the American Chemical Society, 127 210–216. DOI:  10.1021/ja0471525.CrossRefGoogle Scholar
  15. Kanemasa, S., & Tsuge, O. (1990). Recent advances in synthetic applications of nitrile oxide cycloaddition (1981–1989). Heterocycles, 30 719–736. DOI:  10.3987/rev-89-sr3.CrossRefGoogle Scholar
  16. Kanemasa, S., Kobayashi, S., Nishiuchi, M., Yamamoto, H., & Wada, E. (1991). Generation of nitrile oxides through O-methylation of hydroxyl chlorides. Chelation-controlled syn-selective cycloaddition of nitrile oxides to α-substituted allyl alcohols. Tetrahedron Letter, 32 6367–6370. DOI:  10.1016/0040-4039(91)80171-2.CrossRefGoogle Scholar
  17. Katritzky, A. R., Button, M. A. C., & Denisenko, S. N. (2000). Efficient synthesis of 3,5-functionalized isoxazoles and isoxazolines via 1,3-dipolar cycloaddition reactions of 1-propargyland 1-allylbenzotriazoles. Journal of Heterocyclic Chemistry, 37 1505–1510. DOI:  10.1002/jhet.5570370616.CrossRefGoogle Scholar
  18. Kurangi, R. F., Kawthankar, R., Sawal, S., Desai, V. G., & Tilve, S. G. (2007). Convenient synthesis of 3,5-disubstituted isoxazoles. Synthetic Communications, 37 585–587. DOI:  10.1080/00397910601055107.CrossRefGoogle Scholar
  19. Lane, T. J., Nakagawa, I., Walter, J. L., & Kandathil, A. J. (1962). Infrared investigation of certain imidazole derivatives and their metal chelates. Inorganic Chemistry, 1 267–276. DOI:  10.1021/ic50002a014.CrossRefGoogle Scholar
  20. Li, G. Y., Qian, X. H., Cui, J. N., Huang, Q. C., Zhang, R., & Guan, H. (2006). Synthesis and herbicidal activity of novel 3-aminocarbonyl-2-oxazolidinedione derivatives containing a substituted pyridine ring. Journal of Agricultural and Food Chemistry, 54 125–129. DOI:  10.1021/jf051928j.CrossRefGoogle Scholar
  21. Lin, S. T., Kuo, S. H., & Yang, F. M. (1997). Reaction of halogenated cyclopropanes and nitrosyl cation: Preparation of isoxazoles. The Journal of Organic Chemistry, 62 5229–5231. DOI:  10.1021/jo962297i.CrossRefGoogle Scholar
  22. Liu, M. C., Lin, T. S., Cory, J. G., Cory, A. H., & Sartorelli, A. C. (1996). Synthesis and biological activity of 3- and 5-amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone. Journal of Medicinal Chemistry, 39 2586–2593. DOI:  10.1021/jm9600454.CrossRefGoogle Scholar
  23. Lu, Y. C., Lin, Y. H., Wang, D. J., Wang, L. L., Xie, T. F., & Jiang, T. F. (2011). A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Research, 4 1144–1152. DOI:  10.1007/s12274-011-0163-4.CrossRefGoogle Scholar
  24. Lu, Y. C., Lin, Y. H., Xie, T. F., Shi, S. L., Fan, H. M., & Wang, D. J. (2012). Enhancement of visible-light-driven photoresponse of Mn/ZnO system: photogenerated charge transfer properties and photocatalytic activity. Nanoscale, 4 6393–6400. DOI:  10.1039/c2nr31671d.CrossRefGoogle Scholar
  25. Lunn, M. L., Hogner, A., Stensbøl, T. B., Gouaux, E., Egebjerg, J., & Kastrup, J. S. (2003). Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA: Implications for receptor subunit selectivity. Journal of Medicinal Chemistry, 46 872–875. DOI:  10.1021/jm021020+.CrossRefGoogle Scholar
  26. Ma, X. F., Wang, J. X., Li, S. X., Wang, K. H., & Huang, D. F. (2009). One-pot, solvent-free regioselective addition reactions of propargyl bromide to carbonyl compounds mediated by Zn—Cu couple. Tetrahedron, 65 8683–8689. DOI:  10.1016/j.tet.2009.08.051.CrossRefGoogle Scholar
  27. Minakata, S., Okumura, S., Nagamachi, T., & Takeda, Y. (2011). Generation of nitrile oxides from oximes using t-BuOI and their cycloaddition. Organic Letters, 13 2966–2969. DOI:  10.1021/ol2010616.CrossRefGoogle Scholar
  28. Murugesan, N., Gu, Z. X., Stein, P. D., Spergel, S., Mathur, A., Leith, L., Liu, E. C. K., Zhang, R. G., Bird, E., Waldron, T., Marino, A., Morrison, R. A., Webb, M. L., Moreland, S., & Barrish, J. C. (2000). Biphenylsulfonamide endothelin receptor antagonists. 2. Discovery of 4′-oxazolyl biphenylsulfonamides as a new class of potent, highly selective ETA antagonists. Journal of Medicinal Chemistry, 43 3111–3117. DOI:  10.1021/jm000105c.CrossRefGoogle Scholar
  29. Murugesan, N., Gu, Z. X., Fadnis, L., Tellew, J. E., Baska, R. A. F., Yang, Y. F., Beyer, S. M., Monshizadegan, H., Dickinson, K. E., Valentine, M. T., Humphreys, W. G., Lan, S. J., Ewing, W. R., Carlson, K. E., Kowala, M. C., Zahler, R., & Macor, J. E. (2005). Dual angiotensin II and endothelin A receptor antagonists: Synthesis of 2′-substituted N-3-isoxazolyl biphenylsulfonamides with improved potency and pharmacokinetics. Journal of Medicinal Chemistry, 48 171–179. DOI:  10.1021/jm049548x.CrossRefGoogle Scholar
  30. Pirrung, M. C., Tumey, L. N., Raetz, C. R. H., Jackman, J. E., Snehalatha, K., McClerren, A. L., Fierke, C. A., Gantt, S. L., & Rusche, K. M. (2002). Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): Isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. Journal of Medicinal Chemistry, 45 4359–4370. DOI:  10.1021/jm020183v.CrossRefGoogle Scholar
  31. Renard, J. F., Arslan, D., Garbacki, N., Pirotte, B., & de Leval, X. (2009). Pyridine analogues of nimesulide: Design, synthesis, and in vitro and in vivo pharmacological evaluation as promising cyclooxygenase 1 and 2 inhibitors. Journal of Medicinal Chemistry, 52 5864–5871. DOI:  10.1021/jm900702b.CrossRefGoogle Scholar
  32. Shen, C. S., Zhang, Y. M., Gan, Y. M., & Gu, Q. (2011). One-pot synthesis of (3-phenyl isoxazol-5-yl)methanol derivatives under ultrasound. Letters in Organic Chemistry, 8 278–281. DOI:  10.2174/157017811795371467.CrossRefGoogle Scholar
  33. Stanley, L. M., & Sibi, M. P. (2008). Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chemical Reviews, 108 2887–2902. DOI:  10.1021/cr078371m.CrossRefGoogle Scholar
  34. Stevens, R. V. (1976). Studies on the synthesis of corrins and related ligands. Tetrahedron, 32 1599–1612. DOI:  10.1016/0040-4020(76)85146-0.CrossRefGoogle Scholar
  35. Su, Q., Li, P., He, M. N., Wu, Q. L., Ye, L., & Mu, Y. (2014). Facile synthesis of acridine derivatives by ZnCl2-promoted intramolecular cyclization of o-aryl aminophenol schiff bases. Organic Letters, 16 18–21. DOI:  10.1021/ol402732n.CrossRefGoogle Scholar
  36. Tanaka, K., Inoue, S., Murai, N., Shirotori, S., Nakamoto, K., Abe, S., Horii, T., Miyazaki, M., Hata, K., Watanabe, N., Asada, M., & Matsukura, M. (2010). An effective synthesis of a (pyridin-3-yl)isoxazole via 1,3-dipolar cycloaddition using ZnCl2: Synthesis of a (2-aminopyridin-3-yl)isoxazole derivative and its antifungal activity. Chemistry Letters, 39 1033–1035. DOI:  10.1246/cl.2010.1033.CrossRefGoogle Scholar
  37. van Mersbergen, D., Wijnen, J. W., & Engberts, J. B. F. N. (1998). 1,3-Dipolar cycloadditions of benzonitrile oxide with various dipolarophiles in aqueous solutions. A kinetic study. Journal of Organic Chemistry, 63 8801–8805. DOI:  10.1021/jo980900m.CrossRefGoogle Scholar
  38. Wagner, G., Danks, T. N., & Vullo, V. (2007). Quantum-chemical study of the Lewis acid influence on the cycloaddition of benzonitrile oxide to acetonitrile, propyne and propene. Tetrahedron, 63 5251–5260. DOI:  10.1016/j.tet.2007.03.169.CrossRefGoogle Scholar
  39. Waldo, J. P., & Larock, R. C. (2005). Synthesis of isoxazoles via electrophilic cyclization. Organic Letters, 7 5203–5205. DOI:  10.1021/ol052027z.CrossRefGoogle Scholar
  40. Yoshimura, A., Middleton, K. R., Todora, A. D., Kastern, B. J., Koski, S. R., Maskaev, A. V., & Zhdankin, V. V. (2013). Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Organic Letters, 15 4010–4013. DOI:  10.1021/ol401815n.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Da-Wei Zhang
    • 1
  • Feng Lin
    • 2
  • Bo-Chao Li
    • 2
  • Hong-Wei Liu
    • 1
  • Tian-Qi Zhao
    • 1
  • Yu-Min Zhang
    • 1
  • Qiang Gu
    • 1
    Email author
  1. 1.College of ChemistryJilin UniversityChangchunChina
  2. 2.College of Life ScienceJilin UniversityChangchunChina

Personalised recommendations