Skip to main content
Log in

Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Swelling behaviour of poly(N-vinylcaprolactam) (PVC) and poly(N-vinylcaprolactam-co-itaconic acid) (P(VC-co-IA)) gels was investigated in different solvents (water, ethanol, methanol, isopropyl alcohol (IPA), chloroform, toluene, acetone) and in binary solvent mixtures (ethanol/chloroform, ethanol/methanol, IPA/chloroform, ethanol/water, IPA/water). Gels were synthesised in ethanol by the free radical cross-linking polymerisation method at 60°C for 24 h in the presence of azo-bis(isobutyronitrile) and allyl methacrylate as the initiator and cross-linker, respectively. And also, ethanol/distilled water mixture (ϕr = 4:1) was used as the synthesis medium to determine its effect on the swelling of gels. It was found that the presence of water in the synthesis medium significantly affected the equilibrium swelling value (ESV) and the swelling tendency of gels both in solvents and in solvent mixtures. All gels synthesised in ethanol showed the highest swelling in chloroform. The gels synthesised in the ethanol/water mixture displayed different swelling behaviour. In this case, while chloroform was still valid for maximum swelling of PVC, P(VC-co-IA) had the highest swelling in methanol. Solubility parameters of gels were predicted by the van Krevelen-Hoftyzer (VKH) and Hoy methods (group contribution methods) and theoretical calculations verified the experimental swelling order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamska, K., & Voelkel, A. (2006). Hansen solubility parameters for polyethylene glycols by inverse gas chromatography Journal of Chromatography A, 1132, 260–267. DOI: 10.1016/j.chroma.2006.07.066.

    Article  CAS  Google Scholar 

  • Bajpai, S. K., & Sonkusley, J. (2003). Dynamic release of riboflavin from a colon-targeted delivery device: an in vitro study Reactive & Functional Polymers, 55, 197–210. DOI: 10.1016/s1381-5148(02)00247-x.

    Article  CAS  Google Scholar 

  • Boyko, V. B. (2004). N-Vinylcaprolactam based bulk and microgels: Synthesis, structural formation and characterization by dynamic light scattering. Doctor rerum naturalium dissertation, Faculty of Mathematic and Natural Sciences, Dresden University of Technology, Dresden, Germany.

    Google Scholar 

  • Brandrup, J., & Immergut, E. H. (Eds.) (1975). Polymer handbook (2nd ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Bustamante, P., Navarro-Lupión, J., & Escalera, B. (2005). A new method to determine the partial solubility parameters of polymers from intrinsic viscosity. European Journal of Pharmaceutical Sciences, 24, 229–237. DOI: 10.1016/j.ejps.2004.10.012.

    Article  CAS  Google Scholar 

  • Cheng, S. C., Feng, W., Pashikin, I. I., Yuan, L. H., Deng, H. C., & Zhou, Y. (2002). Radiation polymerization of thermosensitive poly (N-vinylcaprolactam). Radiation Physics and Chemistry, 63, 517–519. DOI: 10.1016/s0969-806x(01)00638-7.

    Article  CAS  Google Scholar 

  • Çakal, E., & Çavuş, S. (2010). Novel poly(N-vinylcaprolactam-co-2-(diethylamino)ethyl methacrylate) gels: Characterization and detailed investigation on their stimuli-sensitive behaviors and network structure. Industrial & Engineering Chemistry Research, 49, 11741–11751. DOI: 10.1021/ie1007097.

    Article  Google Scholar 

  • Çavuş, S., & Çakal, E. (2012). Synthesis and characterization of novel poly(N-vinylcaprolactam-co-itaconic acid) gels and analysis of pH and temperature sensitivity. Industrial & Engineering Chemistry Research, 51, 1218–1226. DOI: 10.1021/ie2008746.

    Article  Google Scholar 

  • Çaykara, T., Özyürek, C., Kantoğlu, Ö., & Güven, O. (2002). Influence of gel composition on the solubility parameter of poly(2-hydroxyethyl methacrylate-itaconic acid) hydrogels. Journal of Polymer Science Part B: Polymer Physics, 40, 1995–2003. DOI: 10.1002/polb.10262.

    Article  Google Scholar 

  • Dalkas, G., Pagonis, K., & Bokias, G. (2006). Control of the lower critical solution temperature—type cononsolvency properties of poly(N-isopropylacrylamide) in water—dioxane mixtures through copolymerisation with acrylamide. Polymer, 47, 243–248. DOI: 10.1016/j.polymer.2005.10.115.

    Article  CAS  Google Scholar 

  • El-Hamshary, H. (2007). Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. European Polymer Journal, 43, 4830–4838. DOI: 10.1016/j.eurpolymj.2007.08.018.

    Article  CAS  Google Scholar 

  • Eroğlu, M. S., Baysal, B. M., & Güven, O. (1997). Determination of solubility parameters of poly(epichlorohydrin) and poly(glycidyl azide) networks. Polymer, 38, 1945–1947. DOI: 10.1016/s0032-3861(96)00720-3.

    Article  Google Scholar 

  • Hansen, C. M. (1967). The three dimensional solubility parameter and solvent diffusion coefficient: Their importance in surface coating formulation. PhD. thesis, Technical University of Denmark, Kgs. Lyngby. Copenhagen, Denmark: Danish Technical Press.

    Google Scholar 

  • Hansen, C. M. (2007). Hansen solubility parameters: A user’s handbook (2nd ed.). Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Hildebrand, J. H., & Scott, R. L. (1950). The solubility of non-electrolytes (3rd ed.). New York, NY, USA: Reinhold.

    Google Scholar 

  • Hore, M. J. A., Hammouda, B., Li, Y., & Cheng, H. (2013). Co-nonsolvency of poly(n-isopropylacrylamide) in deuterated water/ethanol mixtures. Macromolecules, 46, 7894–7901. DOI: 10.1021/ma401665h.

    Article  CAS  Google Scholar 

  • Hoy, K. L. (1970). New values of the solubility parameters from vapor pressure data. Journal of Paint Technology, 42, 76–118.

    CAS  Google Scholar 

  • Jagur-Grodzinski, J. (2010). Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies, 21, 27–47. DOI: 10.1002/pat.1504.

    CAS  Google Scholar 

  • Jun, L., Bochu, W., & Yazhou, W. (2006). Thermo-sensitive polymers for controlled-release drug delivery systems. International Journal of Pharmacology, 2, 513–519. DOI: 10.3923/ijp.2006.513.519.

    Article  Google Scholar 

  • Just, S., Sievert, F., Thommes, M., & Breitkreutz, J. (2013). Improved group contribution parameter set for the application of solubility parameters to melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 85, 1191–1199. DOI: 10.1016/j.ejpb.2013.04.006.

    Article  CAS  Google Scholar 

  • Katime, I., Velada, J. L., Novoa, R., Díaz de Apodaca, E., Puig, J., & Mendizabal, E. (1996). Swelling kinetics of poly(acrylamide)/poly(mono-n-alkyl itaconates) hydrogels. Polymer International, 40, 281–286. DOI: 10.1002/(SICI)1097-0126(199608)40:4<281∷AID-PI555>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  • King, M. B. (1969). Phase equilibrium in mixtures. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Krušić, M. K., Ilić, M., & Filipović, J. (2009). Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogels. Polymer Bulletin, 63, 197–211. DOI: 10.1007/s00289-009-0086-3.

    Article  Google Scholar 

  • Mark, J. E. (Ed.) (2007). Physical properties of polymers handbook (2nd ed.). New York, NY, USA: Springer.

    Google Scholar 

  • Meaurio, E., Cesteros, L. C., Katime, I. (1998). Study of the solvent role on complexation in systems poly(mono n-alkyl itaconate)/tertiary polyamide. Polymer, 39, 379–385. DOI: 10.1016/s0032-3861(97)00271-1.

    Article  CAS  Google Scholar 

  • Nasimova, I. R., Makhaeva, E. E., & Khokhlov, A. R. (2001). Poly(N-vinylcaprolactam) gel/organic dye complexes as sensors for metal ions in aqueous salt solutions. Journal of Applied Polymer Science, 81, 3238–3243. DOI: 10.1002/app.1778.

    Article  CAS  Google Scholar 

  • Nurkeeva, Z. S., Mun, G. A., Khutoryanskiy, V. V., Kan, V. A., Zotov, A. A., & Shaikhutdinov, E. M. (2000). Interactions of linear and cross-linked polyacrylic acid with polyvinyl ether of ethyleneglycol in some aliphatic alcohols. Polymer Bulletin, 44, 563–568. DOI: 10.1007/s002890070079.

    Article  CAS  Google Scholar 

  • Osada, Y., Gong, J. P., & Tanaka, Y. (2004). Polymer gels. Journal of Macromolecular Science, Part C: Polymer Reviews, 44, 87–112. DOI: 10.1081/mc-120027935.

    Article  Google Scholar 

  • Özdemir, C., & Güner, A. (2007). Solubility profiles of poly(ethylene glycol)/solvent systems, I: Qualitative comparison of solubility parameter approaches. European Polymer Journal, 43, 3068–3093. DOI: 10.1016/j.eurpolymj.2007.02.022.

    Article  Google Scholar 

  • Ozmen, M. M., & Okay, O. (2003). Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. European Polymer Journal, 39, 877–886. DOI: 10.1016/s0014-3057(02)00356-7.

    Article  Google Scholar 

  • Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids (5th ed.). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Price, G. J., & Shillcock, I. M. (2002). Inverse gas chromatographic measurement of solubility parameters in liquid crystalline systems. Journal of Chromatography A, 964, 199–204. DOI: 10.1016/s0021-9673(02)00651-9.

    Article  CAS  Google Scholar 

  • Ravindra, R., Krovvidi, K. R., & Khan, A. A. (1998). Solubility parameter of chitin and chitosan. Carbohydrate Polymers, 36, 121–127. DOI: 10.1016/s0144-8617(98)00020-4.

    Article  CAS  Google Scholar 

  • Schenderlein, S., Lück, M., & Müller, B. W. (2004). Partial solubility parameters of poly(d,l-lactide-co-glycolide). International Journal of Pharmaceutics, 286, 19–26. DOI: 10.1016/j.ijpharm.2004.07.034.

    Article  CAS  Google Scholar 

  • Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 58, 1655–1670. DOI: 10.1016/j.addr.2006.09.020.

    Article  CAS  Google Scholar 

  • Sevgili, L. M., Toprak, S., & Çavuş, S. (2015). Swelling of N-vinylcaprolactam-dodecyl methacrylate gel in heptane + toluene mixtures. Chemical Papers, 69, 668–678. DOI: 10.1515/chempap-2015-0073.

    Article  CAS  Google Scholar 

  • Shah, S., Pal, A., Gude, R., & Devi, S. (2010). Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). European Polymer Journal, 46, 958–967. DOI: 10.1016/j.eurpolymj.2010.01.005.

    Article  CAS  Google Scholar 

  • Small, P. A. (1953). Some factors affecting the solubility of polymers. Journal of Applied Chemistry, 3, 71–80. DOI: 10.1002/jctb.5010030205.

    Article  CAS  Google Scholar 

  • Tang, Y., Zhang, S., Wang, M., Zhu, J., Sun, T., & Jiang, G. (2014). A glucose-based diblock copolymer: synthesis, characterization and its injectable/temperature-sensitive behaviors. Journal of Polymer Research, 21, 390. DOI: 10.1007/s10965-014-0390-y.

    Article  Google Scholar 

  • Thorne, J. B., Vine, G. J., & Snowden, M. J. (2011). Microgel applications and commercial considerations. Colloid and Polymer Science, 289, 625–646. DOI: 10.1007/s00396-010-2369-5.

    Article  CAS  Google Scholar 

  • Tomić, S. L., & Filipović, J. M. (2004). Synthesis and characterization of complexes between poly(itaconic acid) and poly(ethylene glycol). Polymer Bulletin, 52, 355–364. DOI: 10.1007/s00289-004-0298-5.

    Article  Google Scholar 

  • Troy, D. B. (Ed.) (2006). Remington: The science and practice of pharmacy (21st ed.). Philadelphia, PA, USA: Lippincott Williams & Wilkins.

    Google Scholar 

  • van Krevelen, D. W., & te Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contribution (4th ed.). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Verheyen, S., Augustijns, P., Kinget, R., & Van den Mooter, G. (2001). Determination of partial solubility parameters of five benzodiazepines in individual solvents. International Journal of Pharmaceutics, 228, 199–207. DOI: 10.1016/s0378-5173(01)00838-9.

    Article  CAS  Google Scholar 

  • Zafar, Z. I., Malana, M. A., Pervez, H., Shad, A., & Momma, K. (2008). Synthesis and swelling kinetics of a cross-linked pH-sensitive ternary copolymer gel system. Polymer(Korea), 32, 219–229.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selva Çavuş.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavuş, S., Çakal, E. & Sevgili, L.M. Solvent dependent swelling behaviour of poly(N-vinylcaprolactam) and poly(N-vinylcaprolactam-co-itaconic acid) gels and determination of solubility parameters. Chem. Pap. 69, 1367–1377 (2015). https://doi.org/10.1515/chempap-2015-0153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0153

Keywords

Navigation