Skip to main content
Log in

One-dimensional porous Ag/AgBr/TiO2 nanofibres with enhanced visible light photocatalytic activity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

One-dimensional (1D) Ag/AgBr/TiO2 nanofibres (NFs) have been successfully fabricated by the one-pot electrospinning method. In comparison with bare TiO2 NFs and Ag/AgBr/PVP (polyvinylpyrrolidone) NFs, the 1D Ag/AgBr/TiO2 NFs photocatalyst exhibits much higher photocatalytic activity in the degradation of a commonly used dye, methylene blue (MB), under visible light. The photocatalytic removal efficiency of MB over Ag/AgBr/TiO2 NFs achieves almost 100 % in 20 min. The photocatalytic reaction follows the first-order kinetics and the rate constant (k) for the degradation of MB by Ag/AgBr/TiO2 NFs is 5.2 times and 6.6 times that of Ag/AgBr/PVP NFs and TiO2 NFs, respectively. The enhanced photocatalytic activity is ascribed to the stronger visible light absorption, more effective separation of photogenerated electron-hole pairs, and faster charge transfer in the long nanofibrous structure. The Ag/AgBr/TiO2 NFs maintain a highly stable photocatalytic activity due to its good structural stability and the self-stability system of Ag/AgBr. The mechanisms for photocatalysis associated with Ag/AgBr/TiO2 NFs are proposed. The degradation of MB in the presence of scavengers reveals that h+ and O 2 significantly contribute to the degradation of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bumajdad, A., Madkour, M., Abdel-Moneam, Y., & El-Kemary, M. (2014). Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. Journal of Materials Science, 49 1743–1754. DOI: 10.1007/s10853-013-7861-0.

    Article  CAS  Google Scholar 

  • Chen, J. Z., Yang, H. B., Miao, J. W., Wang, H. Y., & Liu, B. (2014). Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: One-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality. Journal of the American Chemical Society, 136 15310–15318. DOI: 10.1021/ja5080568.

    Article  CAS  Google Scholar 

  • Choi, S. K., Kim, S. H., Lim, S. K., & Park, H. W. (2010). Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: Effects of mesoporosity and interparticle charge transfer. The Journal of Physical Chemistry C, 114, 16475–16480. DOI: 10.1021/jp104317x.

    Article  CAS  Google Scholar 

  • Fratoddi, I., Macagnano, A., Battocchio, C., Zampetti, E., Venditti, I., Russo, M. V., & Bearzotti, A. (2014). Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing materials working at room temperature. Nanoscale, 6 9177–9184. DOI: 10.1039/c4nr01400f.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238 37–38. DOI: 10.1038/238037a0.

    Article  CAS  Google Scholar 

  • Hou, Y., Li, X. Y., Zhao, Q. D., Chen, G. H., & Raston, C. L. (2012). Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environmental Science & Technology, 46 4042–4050. DOI: 10.1021/es204079d.

    Article  CAS  Google Scholar 

  • Jiang, R. B., Li, B. X., Fang, C. H., & Wang, J. F. (2014). Metal/semiconductor hybrid nanostructures for plasmonenhanced applications. Advanced Materials, 26 5274–5309. DOI: 10.1002/adma.201400203.

    Article  CAS  Google Scholar 

  • Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G. L., Li, C., & Willis, P. (2003). Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Advanced Materials, 15 1161–1165. DOI: 10.1002/adma.200304955.

    Article  CAS  Google Scholar 

  • Kuai, L., Geng, B. Y., Chen, X. T., Zhao, Y. Y., & Luo, Y. C. (2010). Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag—AgBr plasmonic photocatalyst. Langmuir, 26 18723–18727. DOI: 10.1021/la104022g.

    Article  CAS  Google Scholar 

  • Lee, S. S., Bai, H. W., Liu, Z. Y., & Sun, D. D. (2013). Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Research, 47 4059–4073. DOI: 10.1016/j.watres.2012.12.044.

    Article  CAS  Google Scholar 

  • Li, M., Zhang, J. Y., & Zhang, Y. (2012). Electronic structure and photocatalytic activity of N/Mo doped anatase TiO2. Catalysis Communications, 29 175–179. DOI: 10.1016/j.catcom.2012.10.014.

    Article  Google Scholar 

  • Li, W., Bai, Y., Liu, W. J., Liu, C., Yang, Z. H., Feng, X., Lu, X. H., & Chan, K. Y. (2011). Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. Journal of Materials Chemistry, 21 6718–6724. DOI: 10.1039/c1jm10115c.

    Article  CAS  Google Scholar 

  • Lin, H. L., Cao, J., Luo, B. D., Xu, B. Y., & Chen, S. F. (2012). Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity. Catalysis Communications, 21 91–95. DOI: 10.1016/j.catcom.2012.02.008.

    Article  Google Scholar 

  • Liu, Y., Zhao, L. A., Li, M. T., & Guo, L. J. (2014a). TiO2/CdSe core-shell nanofiber film for photoelectrochemical hydrogen generation. Nanoscale, 6 7397–7404. DOI: 10.1039/c4nr00856a.

    Article  CAS  Google Scholar 

  • Liu, M. J., He, L., Liu, X. N., Liu, C. B., & Luo, S. L. (2014b). Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst. Journal of Materials Science, 49 2263–2269. DOI: 10.1007/s10853-013-7922-4.

    Article  CAS  Google Scholar 

  • Liu, C. B., Teng, Y. R., Liu, R. H., Luo, S. L., Tang, Y. H., Chen, L. Y., & Cai, Q. Y. (2011). Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. Carbon, 49 5312–5320. DOI: 10.1016/j.carbon.2011.07.051.

    Article  CAS  Google Scholar 

  • Mulvaney, P. (1996). Surface plasmon spectroscopy of nano-sized metal particles. Langmuir, 12 788–800. DOI: 10.1021/la9502711.

    Article  CAS  Google Scholar 

  • Padervand, M., Tasviri, M., & Gholami, M. R. (2011). Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chemical Papers, 65 280–288. DOI: 10.2478/s11696-011-0013-6.

    Article  CAS  Google Scholar 

  • Qiu, P. P., Li, W., Kang, K. L., Park, B. Q., Luo, W., Zhao, D. Y., & Khim, J. Y. (2014). Ordered mesoporous C/TiO2composites as advanced sonocatalysts. Journal of Materials Chemistry A, 2 16452–16458. DOI: 10.1039/c4ta03455d.

    Article  CAS  Google Scholar 

  • Ren, X., Gershon, T., Iza, D. C., Muñoz-Rojas, D., Musselman, K., & MacManus-Driscoll, J. L. (2009). The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis. Nanotechnology, 20 365604. DOI: 10.1088/0957-4484/20/36/365604.

    Article  CAS  Google Scholar 

  • Scuderi, V., Impellizzeri, G., Romano, L., Scuderi, M., Brundo, M. V., Bergum, K., Zimbone, M., Sanz, R., Buccheri, M. A., Simone, F., Nicotra, G., Svensson, B. G., Grimaldi, M. G., & Privitera, V. (2014). An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for ecofriendly water applications. Nanoscale, 6 11189–11195. DOI: 10.1039/c4nr02820a.

    Article  CAS  Google Scholar 

  • Šuligoj, A., Lavrenćić Štangar, U., & Novak Tušar, N. (2014). Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate. Chemical Papers, 68 1265–1272. DOI: 10.2478/s11696-014-0553-7.

    Google Scholar 

  • Tang, Y. H., Luo, S. L., Teng, Y. R., Liu, C. B., Xu, X. L., Zhang, X. L., & Chen, L. A. (2012). Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. Journal of Hazardous Materials, 241–242, 323–330. DOI: 10.1016/j.jhazmat.2012.09.050.

    Article  Google Scholar 

  • Wang, P., Huang, B. B., Qin, X. Y., Zhang, X. Y., Dai, Y., Wei, J. Y., & Whangbo, M. H. (2008). Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 47 7931–7933. DOI: 10.1002/anie.200802483.

    Article  CAS  Google Scholar 

  • Wang, P. H., Tang, Y. X., Dong, Z. L., Chen, Z., & Lim, T. T. (2013). Ag—AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. Journal of Materials Chemistry A, 1 4718–4727. DOI: 10.1039/c3ta01042b.

    Article  CAS  Google Scholar 

  • Wang, X. P., & Lim, T. T. (2013). Highly efficient and stable Ag—AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation. Water Research, 47 4148–4158. DOI: 10.1016/j.watres.2012.11.057.

    Article  CAS  Google Scholar 

  • Wu, N. Q., Wang, J., Tafen, D. N., Wang, H., Zheng, J. G., Lewis, J. P., Liu, X. G., Leonard, S. S., & Manivannan, A. (2010). Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society, 132 6679–6685. DOI: 10.1021/ja909456f.

    Article  CAS  Google Scholar 

  • Xiong, Z. G., & Zhao, X. S. (2012). Nitrogen-doped titanateanatase core-shell nanobelts with exposed 101 anatase facets and enhanced visible light photocatalytic activity. Journal of the American Chemical Society, 134 5754–5757. DOI: 10.1021/ja300730c.

    Article  CAS  Google Scholar 

  • Zhang, X. L., Tang, Y. H., Li, Y., Wang, Y., Liu, X. N., Liu, C. B., & Luo, S. L. (2013). Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol. Applied Catalysis A: General, 457 78–84. DOI: 10.1016/j.apcata.2013.03.011.

    Article  CAS  Google Scholar 

  • Zhang, Y. H., Tang, Z. R., Fu, X. Z., & Xu, Y. J. (2011a). Nanocomposite of Ag—AgBr—TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Applied Catalysis B: Environmental, 106 445–452. DOI: 10.1016/j.apcatb.2011.06.002.

    Article  CAS  Google Scholar 

  • Zhang, P., Shao, C. L., Zhang, Z. Y., Zhang, M. Y., Mu, J. B., Guo, Z. C., & Liu, Y. C. (2011b). TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale, 3 2943–2949. DOI: 10.1039/c1nr10269a.

    Article  CAS  Google Scholar 

  • Zuo, F., Bozhilov, K., Dillon, R. J., Wang, L., Smith, P., Zhao, X. A., Bardeen, C., & Feng, P. Y. (2012). Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angewandte Chemie International Edition, 51 6223–6226. DOI: 10.1002/ange.201202191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hong Tang or Cheng-Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, MY., Meng, DS., Tang, YH. et al. One-dimensional porous Ag/AgBr/TiO2 nanofibres with enhanced visible light photocatalytic activity. Chem. Pap. 69, 1411–1420 (2015). https://doi.org/10.1515/chempap-2015-0151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0151

Keywords

Navigation