Skip to main content
Log in

Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,N′-o-phenylenebis(salicylideneimine)

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

New oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,N′-o-phenylenebis(salicylideneimine) have been synthesized and characterized using infrared and UV-visible spectra, ESR, and thermogravimetry. The complexes were identified as [ML] · (H2O) species, where deprotonated ligands are coordinated to metal through N2O2 donor atoms. Antioxidant activity of the ligands and complexes was evaluated, revealing that the complexes exhibit a higher scavenging activity than the corresponding ligands. The prepared cadmium complexes showed slightly higher activity than the vanadium ones. Antifungal activity was tested against different human fungi including yeasts of the Candida genus (C. albicans and C. glabrata) and an opportunistic mould Aspergillus fumigatus. The oxovanadium complexes exhibited a very low activity toward C. albicans while the cadmium ones showed a significant growth inhibition of all the fungi tested; mainly of A. fumigatus though this mould is poorly susceptible to current antifungal agents like Itraconazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-halim, H. F., Omar, M. M., & Mohamed, G. G. (2011). Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78, 36–44. DOI: 10.1016/j.saa.2010.06.003.

    Article  Google Scholar 

  • Al-Mogren, M. M., Alaghaz, A. N. M. A., & Ebrahem, E. A. (2013). Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N′-salicylidene-1,1-diaminopropane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 695–707. DOI: 10.1016/j.saa.2013.05.079.

    Article  CAS  Google Scholar 

  • Alomar, K., Landreau, A., Kempf, M., Khan, M. A., Allain, M., & Bouet, G. (2010). Synthesis, crystal structure, characterization of zinc(II), cadmium(II) complexes with 3-thiophene aldehyde thiosemicarbazone (3TTSCH). Biological activities of 3TTSCH and its complexes. Journal of Inorganic Biochemistry, 104, 397–404. DOI: 10.1016/j.jinorgbio.2009.11.012.

    Article  CAS  Google Scholar 

  • Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., & Weil, J. A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84, 551–562. DOI: 10.1016/s0308-8146(03)00278-4.

    Article  CAS  Google Scholar 

  • Arber, J. M., de Boer, E., Garner, C. D., Hasnain, S. S., & Wever, R. (1989). Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum. Biochemistry, 28, 7968–7973. DOI: 10.1021/bi00445a062.

    Article  CAS  Google Scholar 

  • Aruna, K., Tariq, M., Bootwala, S., & More, G. (2014). Cadmium and mercury complexes of a Schiff base ligand: Synthesis, spectral characterization, thermal and antimicrobial properties. International Journal of Pharmaceutical Research and Bio-Science, 5, 222–236.

    Google Scholar 

  • Atwood, D. A. (1998). Cationic group 13 complexes. Coordination Chemistry Reviews, 176, 407–430. DOI: 10.1016/s0010-8545(98)00127-1.

    Article  CAS  Google Scholar 

  • Barry, A. L., & Brown, S. D. (1996). Fluconazole disk diffusion procedure for determining susceptibility of Candida species. Journal of Clinical Microbiology, 34, 2154–2157.

    CAS  Google Scholar 

  • Belaid, S., Djebbar, S., Benali-Baitich, O., Khan, M., & Bouet, G. (2007). Complex formation between manganese(II), cobalt(II), nickel(II), copper(II) and a series of new ligands derived from N,N′-o-phenylenebis(salicylideneimine). Comptes Rendus Chimie, 10, 568–572. DOI: 10.1016/j.crci.2006.09.012.

    Article  CAS  Google Scholar 

  • Belaid, S., Landreau, A., Djebbar, S., Benali-Baitich, O., Bouet, G., & Bouchara, J. P. (2008a). Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-o-phenylenebis(salicylideneimine). Journal of Inorganic Biochemistry, 102, 63–69. DOI: 10.1016/j.jinorgbio.2007.07.001.

    Article  CAS  Google Scholar 

  • Belaid, S., Landreau, A., Djebbar, S., Benali-Baïtich, O., Khan, M. A., & Bouet, G. (2008b). Synthesis, characterisation and antifungal activity of a series of cobalt(II) and nickel(II) complexes with ligands derived from reduced N,N′-o-phenylenebis(salicylideneimine). Transition Metal Chemistry, 33, 511–516. DOI: 10.1007/s11243-008-9073-z.

    Article  CAS  Google Scholar 

  • Booysen, I. N., Hlela, T., Gerber, T. I. A., Munro, O. Q., & Akerman, M. P. (2013). Novel vanadium compounds with 2-pyridylbenzimidazole. Polyhedron, 53, 8–14. DOI: 10.1016/j.poly.2013.01.025.

    Article  CAS  Google Scholar 

  • Chohan, Z. H., Shad, H. A., Youssoufi, M. H., & Ben Hadda, T. (2010). Some new biologically active metal-based sulfonamide. European Journal of Medicinal Chemistry, 45, 2893–2901. DOI: 10.1016/j.ejmech.2010.03.014.

    Article  CAS  Google Scholar 

  • Cornman, C. R., Zovinka, E. P., Boyajian, Y. D., Olmstead, M. M., & Noll, B. C. (1999). Synthesis, structure and EPR spectroscopy of a vanadium(IV)-amide metallacyclic complex. Inorganica Chimica Acta, 285, 134–137. DOI: 10.1016/S0020-1693(98)00261-8.

    Article  CAS  Google Scholar 

  • del Campo, R., Criado, J. J., García, E., Hermosa, M. R., Jiménez-Sánchez, A., Manzano, J. L., Monte, E., Rodríguez-Fernández, E., & Sanz, F. (2002). Thiourea derivatives and their nickel(II) and platinum(II) complexes: antifungal activity. Journal of Inorganic Biochemistry, 89, 74–82. DOI: 10.1016/s0162-0134(01)00408-1.

    Article  Google Scholar 

  • Dharmaraj, N., Viswanathamurthi, P., & Natarajan, K. (2001). Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Metal Chemistry, 26, 105–109. DOI: 10.1023/a:1007132408648.

    Article  CAS  Google Scholar 

  • Di Bernardo, P., Zanonato, P. L., Tamburini, S., Tomasin, P., & Vigato, P. A. (2006). Complexation behaviour and stability of Schiff bases in aqueous solution. The case of an acyclic diimino(amino) diphenol and its reduced triamine derivative. Dalton Transactions, 2006, 4711–4721. DOI: 10.1039/b604211b.

    Article  Google Scholar 

  • Duan, X. J., Zhang, W. W., Li, X. M., & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95, 37–43. DOI: 10.1016/j.foodchem.2004.12.015.

    Article  CAS  Google Scholar 

  • Etcheverry, S. B., Barrio, D. A., Zinczuk, J., Williams, P. A. M., & Baran, E. J. (2005). Synthesis, characterization and biological activity of oxovanadium (IV) complexes with cyclic polyalcohols. Journal of Inorganic Biochemistry, 99, 2322–2327. DOI: 10.1016/j.jinorgbio.2005.08.013.

    Article  CAS  Google Scholar 

  • Ferraro, J. R. (1971). Low-frequency vibrations of inorganic and coordination compounds (1st ed.). New York, NY, USA: Plenum Press.

    Google Scholar 

  • Geary, J. W. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. DOI: 10.1016/s0010-8545(00)80009-0.

    Article  CAS  Google Scholar 

  • Gomathi Sankareswari, V., Vinod, D., Mahalakshmi, A., Alamelu, M., Kumaresan, G., Ramaraj, R., & Rajagopal, S. (2014). Interaction of oxovanadium(IV)-salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Transactions, 43, 3260–3272. DOI: 10.1039/c3dt52505h.

    Article  CAS  Google Scholar 

  • Groysman, S., Sergeeva, E., Goldberg, I., & Kol, M. (2005). Salophan complexes of group IV metals. European Journal of Inorganic Chemistry, 2005, 2480–2485. DOI: 10.1002/ejic.200500243.

    Article  Google Scholar 

  • Gust, R., Ott, I., Posselt, D., & Sommer, K. (2004). Development of cobalt (3,4-diarylsalen) complexes as tumor therapeutics. Journal of Medicinal Chemistry, 47, 5837–5846. DOI: 10.1021/jm040763n.

    Article  CAS  Google Scholar 

  • Halli, M. B., Sumathi, R. B., & Kinni, M. (2012). Synthesis, spectroscopic characterization and biological evaluation studies of Schiff’s base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 46–56. DOI: 10.1016/j.saa.2012.08.089.

    Article  CAS  Google Scholar 

  • Han, H., Lu, L. P., Wang, Q. M., Zhu, M. L., Yuan, C. X., Xing, S., & Fu, X. Q. (2012). Synthesis and evaluation of oxovanadium(IV) complexes of Schiff-base condensates from 5-substituted-2-hydroxybenzaldehyde and 2-substituted-benzenamine as selective inhibitors of protein tyrosine phosphatase 1B. Dalton Transactions, 41, 11116–11124. DOI: 10.1039/c2dt30198a.

    Article  CAS  Google Scholar 

  • Harinath, Y., Reddy, D. H. K., Kumar, B. N., Apparao, C., & Seshaiah, K. (2013). Synthesis, spectral characterization and antioxidant activity studies of a bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 101, 264–272. DOI: 10.1016/j.saa.2012.09.085.

    Article  CAS  Google Scholar 

  • Hazra, M., Dolai, T., Giri, S., Patra, A., & Dey, S. K. (2014). Synthesis of biologically active cadmium (II) complex with tridentate N2O donor Schiff base: DFT study, binding mechanism of serum albumins (bovine, human) and fluorescent nanowires. Journal of Saudi Chemical Society, in press. DOI: 10.1016/j.jscs.2014.10.007.

  • Hu, H., Yang, F., Zhang, R. H., Zhang, Y. H., Liu, D. Y., & Yang, G. M. (2013). Synthesis, structure and properties of (VIVO)2MII (M — Cu, Zn) trinuclear complexes derived from a new macrocyclic oxamido vanadium (IV)-oxo ligand. Journal of Molecular Structure, 1036, 402–406. DOI: 10.1016/j.molstruc.2012.11.003.

    Article  CAS  Google Scholar 

  • Ilhan, S., Baykara, H., Seyitoglu, M. S., Levent, A., Özdemir, S., Dündar, A., Öztomsuk, A., & Cornejo, M. H. (2014). Preparation, spectral studies, theoretical, electrochemical and antibacterial investigation of a new Schiff base and its some metal complexes. Journal of Molecular Structure, 1075, 32–42. DOI: 10.1016/j.molstruc.2014.06.062.

    Article  CAS  Google Scholar 

  • Keypour, H., Shayesteh, M., Rezaeivala, M., Chalabian, F., Elerman, Y., & Buyukgungor, O. (2013). Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde. Journal of Molecular Structure, 1032, 62–68. DOI: 10.1016/j.molstruc.2012.07.056.

    Article  CAS  Google Scholar 

  • Koh, L. L., Ranford, J. O., Robinson, W. T., Svensson, J. O., Tau, A. L. C., & Wu, D. (1996). Model for the reduced Schiff base intermediate between amino acids and pyri-doxal: Copper(II) complexes of N-(2-hydroxybenzyl)amino acids with nonpolar side chains and the crystal structures of [Cu(N-(2-hydroxybenzyl)-d, l-alanine)(phen)]·H2O and [Cu(N-(2-hydroxybenzyl)-d,l-alanine)(imidazole)]. Inorganic Chemistry, 35, 6466–6472. DOI: 10.1021/ic9606441.

    Article  CAS  Google Scholar 

  • Kostova, I., & Saso, L. (2012). Advances in research of Schiffbase metal complexes as potent antioxidants. Current Medicinal Chemistry, 20, 4609–4632. DOI: 10.2174/09298673113209990149.

    Article  Google Scholar 

  • Lever, A. B. P. (1997). Inorganic electronic spectroscopy (2nd ed.). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Lv, J., Liu, T. T., Cai, S. L., Wang, X., Liu, L., & Wang, Y. M. (2006). Synthesis, structure and biological activity of cobalt(II) and copper(II) complexes of valine-derived schiff bases. Journal of Inorganic Biochemistry, 100, 1888–1896. DOI: 10.1016/j.jinorgbio.2006.07.014.

    Article  CAS  Google Scholar 

  • Ma, X. F., Li, D. D., Tian, J. L., Kou, Y. Y., & Yan, S. P. (2009). DNA binding and cleavage activity of reduced aminoacid Schiff base complexes of cobalt(II), copper(II), and cadmium(II). Transition Metal Chemistry, 34, 475–481. DOI: 10.1007/s11243-009-9219-7.

    Article  CAS  Google Scholar 

  • Maret, W., & Moulis, J. M. (2013). The bioinorganic chemistry of cadmium in the context of its toxicity. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Cadmium: From toxicity to essentiality (chapter 1, pp. 1–29). Dordrecht, The Netherlands: Springer Netherlands. DOI: 10.1007/978-94-007-5179-8_1.

    Chapter  Google Scholar 

  • Melchior, M., Thompson, K. H., Jong, J. M., Rettig, S. J., Shuter, E., Yuen, V. G., Zhou, Y., McNeill, J. H., & Orvig, C. (1999). Vanadium complexes as insulin mimetic agents: Coordination chemistry and in vivo studies of oxovanadium(IV) and dioxovanadate(V) complexes formed from naturally occurring chelating oxazolinate, thiazolinate, or picolinate units. Inorganic Chemistry, 38, 2288–2293. DOI: 10.1021/ic981231y.

    Article  CAS  Google Scholar 

  • Mohammadi, K., Niad, M., & Irandoost, A. (2013). Synthesis, spectral, thermal and thermodynamic studies of oxovanadium(IV) complexes of Schiff bases derived from 3,4-diaminobenzoic acid with salicylaldehyde derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 145–150. DOI: 10.1016/j.saa.2013.01.035.

    Article  CAS  Google Scholar 

  • Montazerozohori, M., Joohari, S., & Musavi, S. A. (2009). Synthesis and spectroscopic studies of some cadmium(II) and mercury(II) complexes of an asymmetrical bidentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73, 231–237. DOI: 10.1016/j.saa.2009.02.023.

    Article  Google Scholar 

  • Montazerozohori, M., Yadegari, S., & Naghiha, A. (2014a). Synthesis, characterization, electrochemical behavior and an-tibacterial/antifungal activities of [Cd(L)X2] complexes with a new Schiff base ligand. Journal of the Serbian Chemical Society, 79, 793–804. DOI: 10.2298/jsc130520110m.

    Article  CAS  Google Scholar 

  • Montazerozohori, M., Zahedi, S., Nasr-Esfahani, M., & Naghiha, A. (2014b). Some new cadmium complexes: Antibacterial/antifungal activity and thermal behavior. Journal of Industrial and Engineering Chemistry, 20, 2463–2470. DOI: 10.1016/j.jiec.2013.10.027.

    Article  CAS  Google Scholar 

  • Montazerozohori, M., Musavi, S. A., Masoudiasi, A., Naghiha, A., Dusek, M., & Kucerakova, M. (2015). Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 389–396. DOI: 10.1016/j.saa.2014.08.070.

    Article  CAS  Google Scholar 

  • Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds (5th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Nejo, A. A., Kolawole, G. A., Opoku, A. R., Wolowska, J., & O’Brien, P. (2009). Synthesis, characterization and preliminary insulin-enhancing studies of symmetrical tetradentate Schiff base complexes of oxovanadium(IV). Inorganica Chimica Acta, 362, 3993–4001. DOI: 10.1016/j.ica.2009.05.039.

    Article  CAS  Google Scholar 

  • Orvig, C., Thompson, K. H., Battell, M., & McNeill, J. H. (1995). Vanadium compounds as insulin mimics. In A. Sigel, & H. Sigel (Eds.), Metal ions in biological systems (Vol. 31, pp. 575–594). New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Ostrosky-Zeichner, L., Rex, J. H., Pappas, P. G., Hamill, R. J., Larsen, R. A., Horowitz, H. W., Powderly, W. G., Hyslop, N., Kauffman, C. A., Cleary, J., Mangino, J. E., & Lee, J. (2003). Antifungal susceptibility survey of 2000 bloodstream Candida isolates in the United States. Antimicrobial Agents and Chemotherapy, 47, 3149–3154. DOI: 10.1128/aac.47.10.3149-3154.2003.

    Article  CAS  Google Scholar 

  • Que, L., Jr., & Tolman, W. B. (2004). Recurring structural motifs in bioinorganic chemistry. In J. A. McClaverty, & T. J. Meyer (Eds.), Comprehensive coordination chemistry II. Oxford, UK: Pergamon Press. DOI: 10.1016/b0-08-043748-6/08164-0.

    Google Scholar 

  • Ravichandran, R., Rajendran, M., & Devapiriam, D. (2014). Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chemistry, 146, 472–478. DOI: 10.1016/j.foodchem.2013.09.080.

    Article  CAS  Google Scholar 

  • Rehder, D., Santoni, G., Licini, G. M., Schulzke, C., & Meier, B. (2003). The medicinal and catalytic potential of model complexes of vanadate-dependent haloperoxidases. Coordination Chemistry Reviews, 237, 53–63. DOI: 10.1016/s0010-8545(02)00300-4.

    Article  CAS  Google Scholar 

  • Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., & Postgate, J. R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322, 388–390. DOI: 10.1038/322388a0.

    Article  CAS  Google Scholar 

  • Rosu, T., Pahontu, E., Reka-Stefana, M., Ilies, D. C., Georgescu, R., Shova, S., & Gulea, A. (2012). Synthesis, structural and spectral studies of Cu(II) and V(IV) complexes of a novel Schiff base derived from pyridoxal. Antimicrobial activity. Polyhedron, 31, 352–360. DOI: 10.1016/j.poly.2011.09.044.

    Article  CAS  Google Scholar 

  • Sahani, M. K., Yadava, U., Pandey, O. P., & Sengupta, S. K. (2014). Synthesis, spectral characterization and antimicrobial studies of nano-sized oxovanadium(IV) complexes with Schiff bases derived from 5-(phenyl/substituted phenyl)-2-hydrazino-1,3,4-thiadiazole and indoline-2,3-dione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125, 189–194. DOI: 10.1016/j.saa.2014.01.041.

    Article  CAS  Google Scholar 

  • Sakurai, H., Sano, H., Takino, T., & Yasui, H. (2000). An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2)coordination mode; in vitro and in vivo evaluations in rats. Journal of Inorganic Biochemistry, 80, 99–105. DOI: 10.1016/s0162-0134(00)00045-3.

    Article  CAS  Google Scholar 

  • Singh, B. K., Prakash, A., Rajour, H. K., Bhojak, N., & Adhikari, D. (2010). Spectroscopic characterization and biological activity of Zn(II), Cd(II), Sn(II) and Pb(II) complexes with Schiff base derived from pyrrole-2-carboxaldehyde and 2-amino phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76, 376–383. DOI: 10.1016/j.saa.2010.03.031.

    Article  Google Scholar 

  • Taha, Z. A., Ajlouni, A. M., Al Momani, W., & Al-Ghzawi, A. A. (2011). Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81, 570–577. DOI: 10.1016/j.saa.2011.06.052.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Bouet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaid, S., Benali-Baïtich, O., Bouet, G. et al. Synthesis, characterization, and biological activities of oxovanadium(IV) and cadmium(II) complexes with reduced Schiff bases derived from N,N′-o-phenylenebis(salicylideneimine). Chem. Pap. 69, 1350–1360 (2015). https://doi.org/10.1515/chempap-2015-0132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0132

Keywords

Navigation