Skip to main content

Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles

Abstract

Novel copolymers of poly(aniline-co-m-chloroaniline)-doped dodecylbenzenesulphonic acid (DBSA) with embedded silver nanoparticles were synthesised using the in situ chemical oxidative method. The structural properties of the copolymers were characterised using the UV-VIS and FTIR spectroscopic methods. The crystalline nature of the copolymer was demonstrated by way of the X-ray diffraction (XRD) pattern. Scanning electron microscopy (SEM) revealed the presence of particle agglomerates measuring 50 nm to 100 nm on the surface of the nanocomposites. The electrical conductivity of the copolymer was dependent on the monomer composition and was found to be in the range of 10−2 S cm−1 to 10−6 S cm−1 with an increasing chloroaniline content and exhibiting improved solubility.

This is a preview of subscription content, access via your institution.

References

  • Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424 824–830. DOI: 10.1038/nature01937.

    CAS  Article  Google Scholar 

  • Billingham, N. C., Calvert, P. D., Foot, P. J. S., & Mohammad, F. (1987). Stability and degradation of some electrically conducting polymers. Polymer Degradation and Stability, 19 323–341. DOI: 10.1016/0141-3910(87)90034-6.

    CAS  Article  Google Scholar 

  • Chai, H. J., Kim, J. W., & To, K. (1999). Electrorheological characteristics of semiconducting poly(aniline-co-o-ethoxyaniline) suspension. Polymer, 40 2163–2166. DOI: 10.1016/s0032-3861(98)00418-2.

    Article  Google Scholar 

  • Díaz, F.R., Sánchez, C. O., Del Valle, M.A., Torres, J. L., & Tagle, L. H. (2001). Synthesis, characterization and electrical properties of poly(2,5-, 2,3- and 3,5-dichloroaniline)s: Part II. Copolymers with aniline. Synthetic Metals, 118 25–31. DOI: 10.1016/s0379-6779(00)00273-3.

    Article  Google Scholar 

  • Dhanalakshmi, K., & Saraswati, R. (2001). Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). Journal of Materials Science, 36 4107–4115. DOI: 10.1023/a:1017988015634.

    CAS  Article  Google Scholar 

  • Fan, J., Wan, M., & Zhu, D. (1998). Synthesis and characterization of water-soluble conducting copolymer poly (aniline-co-o-aminobenzenesulfonic acid). Journal of Polymer Science Part A: Polymer Chemistry, 36 3013–3019. DOI: 10.1002/(SICI)1099-0518(199812)36:17<3013.

    CAS  Article  Google Scholar 

  • Gok, A., Seri, B., & Talu, M. (2004). Synthesis and characterization of conducting substituted polyanilines. Synthetic Metals, 142 41–48. DOI: 10.1016/j.synthmet.2003.07.002.

    CAS  Article  Google Scholar 

  • Gruger, A., Novak, A., Regis, A., & Colomban, P. (1994). Infrared and Raman study of polyaniline Part II: Influence of ortho substituents on hydrogen bonding and UV/Vis—near-IR electron charge transfer. Journal of Molecular Structure, 328 153–167. DOI: 10.1016/0022-2860(94)08368-1.

    CAS  Article  Google Scholar 

  • Gupta, M. C., & Umare, S. S. (1992). Studies on poly(o-methoxyaniline). Macromolecules, 25 138–142. DOI: 10.1021/ma00027a023.

    CAS  Article  Google Scholar 

  • Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294 1901–1903. DOI: 10.1126/science.1066541.

    CAS  Article  Google Scholar 

  • Kang, D. P., & Yun, M. S. E. (1989). Chemical polymerization of 2-chloroaniline and 2-fluoroaniline by chromic acid. Synthetic Metals, 29 343–348. DOI: 10.1016/0379-6779(89)90316-0.

    Article  Google Scholar 

  • Karyakin, A. A., Maltsev, I. A., & Lukachova, L. V. (1996). The influence of defects in polyaniline structure on its electroactivity: optimization of ‘self-doped’ polyaniline synthesis. Journal of Electroanalytical Chemistry, 402 217–219. DOI: 10.1016/0022-0728(95)04303-9.

    Article  Google Scholar 

  • Kim, Y. H., Foster, C., Chiang, J., & Heeger, A. J. (1989). Localized charged excitations in polyaniline: Infrared photoexcitation and protonation studies. Synthetic Metals, 29 285–290. DOI: 10.1016/0379-6779(89)90308-1.

    Article  Google Scholar 

  • Koul, S., Chandra, R., & Dhawan, S. K. (2001). Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sensors and Actuators B: Chemical, 75 151–159. DOI: 10.1016/s0925-4005(00)00685-7.

    CAS  Article  Google Scholar 

  • Leclerc, M., Guay, J., & Dao, L. H. (1989). Synthesis and characterization of poly(alkylanilines). Macromolecules, 22 649–653. DOI: 10.1021/ma00192a024.

    CAS  Article  Google Scholar 

  • Leite, F. L., Alves, W.F., Mir, M., Mascarenhas, Y.P., Herrmann, P. S. P., Mattoso, L. H. C., & Oliveira, O. N. (2008). TEM, XRD and AFM study of poly(o-ethoxyaniline) films: new evidence for the formation of conducting islands. Applied Physics A Material Science Process, 93 537–542. DOI: 10.1007/s00339-008-4686-9.

    CAS  Article  Google Scholar 

  • Li, X. G., Huang, M. R., Li, F., Cai, W. J., Jin, Z., & Yang, Y. L. (2000). Oxidative copolymerization of 2-pyridylamine and aniline. Journal of Polymer Science Part A: Polymer Chemistry, 38 4407–4418. DOI: 10.1002/1099-0518(20001215)38:24<4407.

    CAS  Article  Google Scholar 

  • Li, X. G., Huang, M. R., Jin, Y., & Yang, Y. L. (2001). Soluble copolymers via oxidative polymerization of pyrimidylamine and anisidine. Polymer, 42 3427–3435. DOI: 10.1016/s0032-3861(00)00716-3.

    CAS  Article  Google Scholar 

  • Li, X. G., Huang, M. R., Duan, W., & Yang, Y. L. (2002). Novel multifunctional polymers from aromatic fiamines by oxidative polymerizations. Chemical Reviews, 102 2925–3030. DOI: 10.1021/cr010423z.

    CAS  Article  Google Scholar 

  • Li, X. G., Huang, M. R., Feng, W., Zhu, M. F., & Chen, Y. M. (2004). Facile synthesis of highly soluble copolymers and sub-micrometer particles from ethylaniline with anisidine and sulfoanisidine. Polymer, 45 101–115. DOI: 10.1016/j.polymer.2003.10.085.

    CAS  Article  Google Scholar 

  • Li, X. G., Huang, M. R., Lu, Y. Q., & Zhu, M. F. (2005). Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline. Journal of Materials Chemistry, 15 1343–1352. DOI: 10.1039/b412587h.

    CAS  Article  Google Scholar 

  • Lux, F., Hinrichsen, G., & Pohl, M. M. (1994). TEM evidence for the existence of conducting islands in highly conductive polyaniline. Journal of Polymer Science Part B: Polymer Physics, 32 1957–1959. DOI: 10.1002/polb.1994.090321201.

    CAS  Article  Google Scholar 

  • MacDiarmid, A. G. (2002). Synthetic metals: a novel role for organic polymers. Synthetic Metals, 125 11–22. DOI: 10.1016/s0379-6779(01)00508-2.

    CAS  Article  Google Scholar 

  • Mazerolles, L., Folch, S., & Colomban, P. (1999). Study of polyanilines by high-resolution electron microscopy. Macromolecules, 32 8504–8508. DOI: 10.1021/ma991290a.

    CAS  Article  Google Scholar 

  • Mohan, Y. M., Lee, K., Premkumar, T., & Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48 158–164. DOI: 10.1016/j.polymer.2006.10.045.

    CAS  Article  Google Scholar 

  • Moucka, R., Mrlik, M., Ilcikova, M., Spitalsky, Z., Kazantseva, N., Bober, P., & Stejskal, J. (2013). Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chemical Papers, 67 1012–1019. DOI: 10.2478/s11696-013-0351-7.

    CAS  Article  Google Scholar 

  • Neoh, K. G., & Kang, E. T. (1990). Chemical copolymerization of aniline with halogen-substituted anilines.European Polymer Journal, 26 403–407. DOI: 10.1016/0014-3057(90)90041-2.

    CAS  Article  Google Scholar 

  • Palaniappan, S. (2000). Chemical copolymerization of aniline with o-chloroaniline: thermal stability by spectral studies. Polymer International, 49 659–662. DOI: 10.1002/1097-0126(200007)49:7<659.

    CAS  Article  Google Scholar 

  • Rahman, N. A., Nikolaidis, M. G., Ray, S., Easteal, A. J., & Sejdic, J. T., (2010), Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid). Synthetic Metals, 160 2015–2022. DOI: 10.1016/j.synthmet.2010.07.031.

    Article  Google Scholar 

  • Ravi Kumar, G., Vivekanandan, J., Mahudeswaran, A., & Vijayanand, P. S. (2013). Synthesis and characterization of novel poly(aniline-co-m-aminoacetophenone) copolymer nanocomposites using dodecylbenzene sulfonic acid as a soft template. Iranian Polymer Journal, 22 923–929. DOI: 10.1007/s13726-013-0191-x.

    CAS  Article  Google Scholar 

  • Roe, M. G., Ginder, J. M., Wigen, P. E., Epstein, A. J., Angelopoulous, M., & Macdiarmid, A. G. (1988). Photoexcitation of polarons and molecular excitons in emeraldine base. Physical Review Letters, 60 2789–2792. DOI: 10.1103/PhysRevLett.60.2789.

    CAS  Article  Google Scholar 

  • Salavagione, H. J., Acevedo, D. F., Miras, M. C., Motheo, A. J., & Barbero, C. A. (2004). Comparative study of 2-amino and 3-aminobenzoic acid copolymerization with aniline synthesis and copolymer properties. Journal of Polymer Science Part A: Polymer Chemistry, 42 5587–5599. DOI: 10.1002/pola.20409.

    CAS  Article  Google Scholar 

  • Schmid, G. (1995). Colloids and clusters. New York, NY, USA: VCH Press.

    Google Scholar 

  • Sharma, A. L., Saxena, V., Annapoorni, S., & Malhotra, B. D. (2001). Synthesis and characterization of a copolymer: Poly(aniline-co-fluoroaniline). Journal of Applied Polymer Science, 81 1460–1466. DOI: 10.1002/app.1572.

    CAS  Article  Google Scholar 

  • Snauwaert, P. H., Lazzaroni, R., Riga, J., & Verbist, J. (1986). Electronic structure of polyanilines: An XPS study of electrochemically prepared compounds. Synthetic Metals, 16 245–255. DOI: 10.1016/0379-6779(86)90117-7g.

    CAS  Article  Google Scholar 

  • Stejskal, J. (2013). Conducting polymer-silver composites. Chemical Papers, 67 814–848. DOI: 10.2478/s11696-012-0304-6.

    CAS  Article  Google Scholar 

  • Swaruparani, H., Basavaraja, S., Basavaraja, C., Huh, D. S., & Venkataraman, A. (2010). A new approach to soluble polyaniline and its copolymers with toluidines. Journal of Applied Polymer Science, 117 1350–1360. DOI: 10.1002/app.31745.

    CAS  Google Scholar 

  • Travers, J. P., Sixou, B., Berner, D., Wolter, A., Rannou, P., Beau, B., Pépin-Donat, B., Barthet, C., Gulglielmi, M., Mermilliod, N., Gilles, B., Djurado, D., Attias, A. J., & Vautrin, M. (1999). Is granularity the determining feature for electron transport in conducting polymers? Synthetic Metals, 101 359–362. DOI: 10.1016/s0379-6779(98)00354-3.

    CAS  Article  Google Scholar 

  • Upadhyay, P. K., & Ahmad, A. (2009). Chemical synthesis, spectral characterization and thermal degradation of poly(aniline-co-m-chloroaniline). Analytical & Bioanalytical Electrochemistry, 1 11–26.

    Google Scholar 

  • Vijayanand, P. S., Vivekanandan, J., Mahudeswaran, A., Ravi Kumar, G., & Anandarasu, R. (2015). Synthesis and characterization of poly(m-toluidine)-silver halide nanocomposites: thermal properties and its conducting behavior. Designed Monomers and Polymers, 18 12–17. DOI: 10.1080/15685551.2014.947548.

    CAS  Article  Google Scholar 

  • Vivekanandan, J., Ponnusamy, V., Mahudeswaran, A., & Vijayanand, P. S. (2011). Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archives of Applied Science Research, 3 147–153.

    CAS  Google Scholar 

  • Wang, S. L., Wang, F. S., & Ge, X. H. (1986). Polymerization of substituted aniline and characterization of the polymers obtained. Synthetic Metals, 16 99–104. DOI: 10.1016/0379-6779(86)90158-x.

    CAS  Article  Google Scholar 

  • Wei, Y., Hariharan, R., & Patel, S. A. (1990). Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 23 758–764. DOI: 10.1021/ma00205a011.

    CAS  Article  Google Scholar 

  • Yan, Y., Liu, S., & Kimura, K. (2006). Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angewandte Chemie International Edition, 45 5662–5665. DOI: 10.1002/anie.200601233.

    Article  Google Scholar 

  • Yang, J., Yin, H., Jia, J., & Wei, Y. (2011). Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir, 27 5047–5053. DOI: 10.1021/la200013z.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pachanoor Subbaian Vijayanand.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vivekanandan, J., Mahudeswaran, A., Tang, XY. et al. Synthesis, characterisation, and electrical properties of novel nanostructured conducting poly(aniline-co-m-chloroaniline) with incorporated silver particles. Chem. Pap. 69, 964–972 (2015). https://doi.org/10.1515/chempap-2015-0103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0103

Keywords

  • aniline
  • m-chloroaniline
  • copolymers
  • silver nanoparticle
  • morphology
  • conductivity