Skip to main content
Log in

An electrochemical sensor for sensitive determination of nitrites based on Ag-Fe3O4-graphene oxide magnetic nanocomposites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A functional Ag-Fe3O4-grapheme oxide magnetic nanocomposite was synthesized and used to prepare a nitrite sensor. Morphology and composition of the nanocomposites were characterized by a transmission electron microscope, UV-VIS spectroscopy, X-ray diffraction, and Fourier transform infrared spectra. Electrochemical investigation indicated that the nanocomposites possess excellent electrochemical oxidation ability towards nitrites. The sensor exhibited two linear ranges: one from 0.5 µM to 0.72 mM with a correlation coefficient of 0.996 and sensitivity of 1996 µA mM−1 cm−2; the other from 0.72 mM to 8.15 mM with a correlation coefficient of 0.998 and sensitivity of 426 µAmM−1 cm−2. The limit of detection of this sensing system was 0.17 µM at the signal-to-noise ratio of 3. Additionally, the sensor exhibited long-term stability, good reproducibility, and anti-interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afkhami, A., Bahram, M., Gholami, S., & Zand, Z. (2005). Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Analytical Biochemistry, 336 295–299. DOI: 10.1016/j.ab.2004.10.026.

    Article  CAS  Google Scholar 

  • Basu, S., & Bhattacharyya, P. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B: Chemical, 173 1–21. DOI: 10.1016/j.snb.2012.07.092.

    Article  CAS  Google Scholar 

  • Brylev, O., Sarrazin, M., Roué, L., & Bélanger, D. (2007). Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochimica Acta, 52 6237–6247. DOI: 10.1016/j.electacta.2007.03.072.

    Article  CAS  Google Scholar 

  • Chen, D., Feng, H. B., & Li, J. H. (2012). Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews, 112 6027–6053. DOI: 10.1021/cr300115g.

    Article  CAS  Google Scholar 

  • Deng, Y. H., Deng, C. H., Yang, D., Wang, C. C., Fu, S. K., & Zhang, X. M. (2005). Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chemical Communications, 2005 5548–5550. DOI: 10.1039/b511683j.

    Article  Google Scholar 

  • Devi, R., Batra, B., Lata, S., Yadav, S., & Pundir, C. S. (2013). A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48 242–249. DOI: 10.1016/j.procbio.2012.12.009.

    Article  CAS  Google Scholar 

  • Dreyer, D. R., Park, S. J., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39 228–240. DOI: 10.1039/b917103g.

    Article  CAS  Google Scholar 

  • Ensafi, A. A., Abarghoui, M. M., & Rezaei, B. (2014). Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical, 196 398–405. DOI: 10.1016/j.snb.2014.02.028.

    Article  CAS  Google Scholar 

  • Guy, K. A., Xu, H. P., Yang, J. C., Werth, C. J., & Shapley, J. R. (2009). Catalytic nitrate and nitrite reduction with Pd-Cu/PVP colloids in water: Composition, structure, and reactivity correlations. The Journal of Physical Chemistry C, 113 8177–8185. DOI: 10.1021/jp810049y.

    Article  CAS  Google Scholar 

  • Hu, Y. W., Li, F. H., Bai, X. X., Li, D., Hua, S. C., Wang, K. K., & Niu, L. (2011). Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chemical Communications, 47 1743–1745. DOI: 10.1039/c0cc04514d.

    Article  CAS  Google Scholar 

  • Iammarino, M., Di Taranto, A., & Cristino, M. (2013). Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring. Food Chemistry, 140 763–771. DOI: 10.1016/j.foodchem.2012.10.094.

    Article  CAS  Google Scholar 

  • Jiang, L. Y., Wang, R. X., Li, X. M., Jiang, L. P., & Lu, G. H. (2005). Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochemistry Communication, 7 597–601. DOI: 10.1016/j.elecom.2005.04.009.

    Article  CAS  Google Scholar 

  • Jiang, Y. S., Zheng, B. Z., Du, J., Liu, G. Y., Guo, Y., & Xiao, D. (2013). Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 112 129–135. DOI: 10.1016/j.talanta.2013.03.015.

    Article  CAS  Google Scholar 

  • Kassaee, M. Z., Motamedi, E., & Majdi, M. (2011). Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal, 172 540–549. DOI: 10.1016/j.cej.2011.05.093.

    Article  CAS  Google Scholar 

  • Li, H., Meininger, C. J., & Wu, G. Y. (2000). Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 746 199–207. DOI: 10.1016/s0378-4347(00)00328-5.

    Article  CAS  Google Scholar 

  • Li, J., & Liu, C. Y. (2010). Ag/graphene heterostructures: Synthesis, characterization and optical properties. European Journal of Inorganic Chemistry, 2010 1244–1248. DOI: 10.1002/ejic.200901048.

    Article  Google Scholar 

  • Li, X. R., Kong, F. Y., Liu, J., Liang, T. M., Xu, J. J., & Chen, H. Y. (2012). Synthesis of potassium-modified graphene and its application in nitrite-selective sensing. Advanced Functional Materials, 22 1981–1988. DOI: 10.1002/adfm.201103025.

    Article  CAS  Google Scholar 

  • Lin, Z., Xue, W., Chen, H., & Lin, J. M. (2011). Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Analytical Chemistry, 83 8245–8251. DOI: 10.1021/ac202039h.

    Article  CAS  Google Scholar 

  • Liu, H., Gao, J., Xue, M. Q., Zhu, N., Zhang, M. N., & Cao, T. B. (2009). Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir, 25 12006–12010. DOI: 10.1021/la9029613.

    Article  CAS  Google Scholar 

  • Mani, V., Periasamy, A. P., & Chen, S. M. (2012). Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochemistry Communications, 17 75–78. DOI: 10.1016/j.elecom.2012.02.009.

    Article  CAS  Google Scholar 

  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis ofgraphene oxide. ACS Nano, 4 4806–4814. DOI: 10.1021/nn1006368.

    Article  CAS  Google Scholar 

  • Miao, P., Shen, M., Ning, L. M., Chen, G. F., & Yin, Y. M. (2011). Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Analytical and Bioanalytical Chemistry, 399 2407–2411. DOI: 10.1007/s00216-010-4642-3.

    Article  CAS  Google Scholar 

  • Muchindu, M., Waryo, T., Arotiba, O., Kazimierska, E., Morrin, A., Killard, A. J., Smyth, M. R., Jahed, N., Kgarebe, B., Baker, P. G. L., & Iwuoha, E. I. (2010). Electrochemical nitrite nanosensor developed with amine-and sulphate-functionalised polystyrene latex beads self-assembled on polyaniline. Electrochimica Acta, 55 4274–4280. DOI: 10.1016/j.electacta.2009.06.047.

    Article  CAS  Google Scholar 

  • Murugan, A. V., Muraliganth, T., & Manthiram, A. (2009). Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chemistry of Materials, 21 5004–5006. DOI: 10.1021/cm902413c.

    Article  CAS  Google Scholar 

  • Ning, D. L., Zhang, H. F., & Zheng, J. B. (2014). Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. Journal of Electroanalytical Chemistry, 717–718 29–34. DOI: 10.1016/j.jelechem.2013.12.011.

    Article  Google Scholar 

  • Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102 10451–10453. DOI: 10.1073/pnas.0502848102.

    Article  CAS  Google Scholar 

  • Qu, J. C., Ren, C. L., Dong, Y. L., Chang, Y. P., Zhou, M., & Chen, X. G. (2012). Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalysts. Chemical Engineering Journal, 211–212 412–420. DOI: 10.1016/j.cej.2012.09.096.

    Article  Google Scholar 

  • Salimi, A., Noorbakhsh, A., & Ghadermarzi, M. (2007). Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 123 530–537. DOI: 10.1016/j.snb.2006.09.054.

    Article  CAS  Google Scholar 

  • Šljukić, B., Banks, C. E., Crossley, A., & Compton, R. G. (2007). Copper oxide — graphite composite electrodes: Application to nitrite sensing. Electroanalysis, 19 79–84. DOI: 10.1002/elan.200603708.

    Article  Google Scholar 

  • Song, Y. H., He, Z. F., Hou, H. Q., Wang, X. L., & Wang, L. (2012). Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochimica Acta, 71 58–65. DOI: 10.1016/j.electacta.2012.03.077.

    Article  CAS  Google Scholar 

  • Sun, W. L., Zhang, S., Liu, H. Z., Jin, L. T., & Kong, J. L. (1999). Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium(II)-substituted Keggin type heteropolytungstate. Analytica Chimica Acta, 388 103–110. DOI: 10.1016/s0003-2670(99)00064-1.

    Article  CAS  Google Scholar 

  • Sun, W., Zhang, Y. Y., Ju, X. M., Li, G. J., Gao, H. W., & Sun, Z. F. (2012). Electrochemical deoxyribonucleic acid biosensor based on carboxyl functionalized graphene oxide and poly-L-lysine modified electrode for the detection of tlh gene sequence related to vibrio parahaemolyticus. Analytica Chimica Acta, 752 39–44. DOI: 10.1016/j.aca.2012.09.009.

    Article  CAS  Google Scholar 

  • Teymourian, H., Salimi, A., & Khezrian, S. (2013). Fe3O4magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49 1–8. DOI: 10.1016/j.bios.2013.04.034.

    Article  CAS  Google Scholar 

  • Wang, L. Y., Bao, J., Wang, L., Zhang, F., & Li, Y. D. (2006). One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry A European Journal, 12 6341–6347. DOI: 10.1002/chem.200501334.

    Article  CAS  Google Scholar 

  • Wang, P., Mai, Z. B., Dai, Z., Li, Y. X., & Zou, X. Y. (2009). Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosensors and Bioelectronics, 24 3242–3247. DOI: 10.1016/j.bios.2009.04.006.

    Article  CAS  Google Scholar 

  • Wang, D. T., Li, X., Chen, J. F., & Tao, X. (2012). Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chemical Engineering Journal, 198–199 547–554. DOI: 10.1016/j.cej.2012.04.062.

    Article  Google Scholar 

  • Yang, H.F., Shan, C. S., Li, F. H., Han, D.X., Zhang, Q. X., & Niu, L. (2009a). Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chemical Communications, 2009 3880–3882. DOI: 10.1039/b905085j.

    Article  Google Scholar 

  • Yang, X. Y., Zhang, X. Y., Ma, Y. F., Huang, Y., Wang, Y. S., & Chen, Y. S. (2009b). Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry, 19 2710–2714. DOI: 10.1039/b821416f.

    Article  CAS  Google Scholar 

  • Yang, Y. K., He, C.E., He, W. J., Yu, L. J., Peng, R. G., Xie, X. L., Wang, X. B., & Mai, Y. W. (2011). Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites. Journal of Nanoparticle Research, 13 5571–5581. DOI: 10.1007/s11051-011-0550-5.

    Article  CAS  Google Scholar 

  • Ye, Y. P, Kong, T., Yu, X. F., Wu, Y. K., Zhang, K., & Wang, X. P. (2012). Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta, 89 417–421. DOI: 10.1016/j.talanta.2011.12.054.

    Article  CAS  Google Scholar 

  • Yuan, B. Q., Xu, C. Y., Deng, D. H., Xing, Y., Liu, L., Pang, H., & Zhang, D. J. (2013). Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta, 88 708–712. DOI: 10.1016/j.electacta.2012.10.102.

    Article  CAS  Google Scholar 

  • Zhao, B., Liu, Z. R., Liu, Z. L., Liu, G. X., Li, Z., Wang, J. X., & Dong, X. T. (2009). Silver microspheres for application as hydrogen peroxide sensor. Electrochemistry Communications, 11 1707–1710. DOI: 10.1016/j.elecom.2009.06.035.

    Article  CAS  Google Scholar 

  • Zhang, Y. B., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438 201–204. DOI: 10.1038/nature04235.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhao, Y. H., Yuan, S. S., Wang, H. G., & He, C. D. (2013). Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 185 602–607. DOI: 10.1016/j.snb.2013.05.059.

    Article  CAS  Google Scholar 

  • Zhu, N. N., Xu, Q., Li, S. N., & Gao, H. (2009). Electrochemical determination of nitrite based on poly(amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochemistry Communications, 11 2308–2311. DOI: 10.1016/j.elecom.2009.10.018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Bin Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BQ., Nie, F., Sheng, QL. et al. An electrochemical sensor for sensitive determination of nitrites based on Ag-Fe3O4-graphene oxide magnetic nanocomposites. Chem. Pap. 69, 911–920 (2015). https://doi.org/10.1515/chempap-2015-0099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0099

Keywords

Navigation