Skip to main content

Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies

Abstract

Methylene blue (MB) removal using eco-friendly, cost-effective, and freely available Urtica was investigated. The morphology of the adsorbent surface and the nature of the possible Urtica and MB interactions were examined using SEM analysis and the FTIR technique, respectively. Various factors affecting MB adsorption such as adsorption time, initial MB concentration, temperature, and solution pH were investigated. The adsorption process was analysed using different kinetic models and isotherms. The results showed that the MB adsorption kinetic follows a pseudo-second-order kinetic model and the isotherm data fit the Langmuir isotherm well. Thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were also evaluated, and the results indicated that the adsorption process is endothermic and spontaneous in nature. The MB adsorption capacity of Urtica was found to be as high as 101.01 mg g−1, higher than those of many other adsorbents studied in the literature. This superior adsorption capacity, along with the ready availability of Urtica, render this adsorbent potentially suitable for practical applications.

This is a preview of subscription content, access via your institution.

References

  • Ai, L. H., Zhou, Y., & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination, 266 72–77. DOI: 10.1016/j.desal.2010.08.004.

    CAS  Article  Google Scholar 

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92 263–274. DOI: 10.1016/s0304-3894(02)00017-1.

    CAS  Article  Google Scholar 

  • Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65 1–8. DOI: 10.2478/s11696-010-0083-x.

    CAS  Article  Google Scholar 

  • Auta, M., & Hameed, B. H. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198–199 219–227. DOI: 10.1016/j.cej.2012.05.075.

    Article  Google Scholar 

  • Auta, M., & Hameed, B. H. (2014). Chitosan-clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chemical Engineering Journal, 237 352–361. DOI: 10.1016/j.cej.2013.09.066.

    CAS  Article  Google Scholar 

  • Ayad, M. M., Abu El-Nasr, A., & Stejskal, J. (2012). Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. Journal of Industrial and Engineering Chemistry, 18 1964–1969. DOI: 10.1016/j.jiec.2012.05.012.

    CAS  Article  Google Scholar 

  • Bao, Y. Z., & Zhang, G. L. (2012). Study of adsorption characteristics of methylene blue onto activated carbon made by Salix psammophila. Energy Procedia, 16B 1141–1146. DOI: 10.1016/j.egypro.2012.01.182.

    Article  Google Scholar 

  • Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194 259–267. DOI: 10.1016/j.desal.2005.10.032.

    CAS  Article  Google Scholar 

  • Cherifi, H., Fatiha, B., & Salah, H. (2013). Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Applied Surface Science, 282 52–59. DOI: 10.1016/j.apsusc.2013.05.031.

    CAS  Article  Google Scholar 

  • Deepa, K., Chandran, P., & Sudheer Khan, S. (2013). Bioremoval of Direct Red from aqueous solution by Pseudomonas putida and its adsorption isotherms and kinetics. Ecological Engineering, 58 207–213. DOI: 10.1016/j.ecoleng.2013.06.037.

    Article  Google Scholar 

  • Ebrahimzadeh Rajaei, G., Aghaie, H., Zare, K., & Aghaie, M. (2013). Adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto fine powder of Typha latifolia L. root: kinetics and isotherm studies. Research on Chemical Intermediates, 39 3579–3594. DOI: 10.1007/s11164-012-0864-7.

    CAS  Article  Google Scholar 

  • ElShafei, G. M. S., ElSherbiny, I. M. A., Darwish, A. S., & Philip, C. A. (2014). Silkworms’ feces-based activated carbons as cheap adsorbents for removal of cadmium and methylene blue from aqueous solutions. Chemical Engineering Research and Design, 92 461–470. DOI: 10.1016/j.cherd.2013.09.004.

    CAS  Article  Google Scholar 

  • Ghaedi, M., Ghaedi, A. M., Abdi, F., Roosta, M., Vafaei, A., & Asghari, A. (2013a). Principal component analysis-adaptive neuro-fuzzy inference system modeling and genetic algorithm optimization of adsorption of methylene blue by activated carbon derived from Pistacia khinjuk. Ecotoxicology and Environmental Safety, 96 110–117. DOI: 10.1016/j.ecoenv.2013.05.015.

    CAS  Article  Google Scholar 

  • Ghaedi, M., Danaei Ghazanfarkhani, M., Khodadoust, S., Sohrabi, N., & Oftade, M. (2013b). Acceleration of methylene blue adsorption onto activated carbon prepared from dross licorice by ultrasonic: Equilibrium, kinetic and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 20 2548–2560. DOI: 10.1016/j.jiec.2013.10.039.

    Article  Google Scholar 

  • Gong, R. M., Li, M., Yang, C., Sun, Y. Z., & Chen, J. (2005). Removal of cationic dyes from aqueous solution by adsorption on peanut hull. Journal of Hazardous Materials, 121 247–250. DOI: 10.1016/j.jhazmat.2005.01.029.

    CAS  Article  Google Scholar 

  • Gülçin, İ., Küfrevioğlu, Ö. İ., Oktay, M., & Büyükokuroğlu, M. E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90 205–215. DOI: 10.1016/j.jep.2003.09.028.

    Article  Google Scholar 

  • Gulshan, F., Yanagida, S., Kameshima, Y., Isobe, T., Nakajima, A., & Okada, K. (2010). Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution. Water Research, 44 2876–2884. DOI: 10.1016/j.watres.2010.01.040.

    CAS  Article  Google Scholar 

  • Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2011). Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.arabjc.2011.07.021.

  • Hameed, B. H., & Ahmad, A. A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials, 164 870–875. DOI: 10.1016/j.jhazmat.2008.08.084.

    CAS  Article  Google Scholar 

  • Han, X. L., Wang, W., & Ma, X. J. (2011). Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chemical Engineering Journal, 171 1–8. DOI: 10.1016/j.cej.2011.02.067.

    CAS  Article  Google Scholar 

  • Ismail, B., Hussain, S. T., & Akram, S. (2013). Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: Adsorption isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 219 395–402. DOI: 10.1016/j.cej.2013.01.034.

    CAS  Article  Google Scholar 

  • Kadirova, Z. C., Katsumata, K. I., Isobe, T., Matsushita, N., Nakajima, A., & Okada, K. (2013). Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution. Applied Surface Science, 284 72–79. DOI: 10.1016/j.apsusc.2013.07.014.

    CAS  Article  Google Scholar 

  • Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., & Bakhtiari, O. (2013). Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chemical Papers, 67 722–729. DOI: 10.2478/s11696-013-0374-0.

    CAS  Article  Google Scholar 

  • Li, Y. H., Du, Q. J., Liu, T. H., Sun, J. K., Wang, Y. H., Wu, S. L., Wang, Z. H., Xia, Y. Z., & Xia, L. H. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95 501–507. DOI: 10.1016/j.carbpol.2013.01.094.

    CAS  Article  Google Scholar 

  • Liu, Y., Kang, Y. R., Mu, B., & Wang, A. Q. (2014). Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution. Chemical Engineering Journal, 237 403–410. DOI: 10.1016/j.cej.2013.10.048.

    CAS  Article  Google Scholar 

  • Morshedi, D., Mohammadi, Z., Akbar Boojar, M. M., & Aliakbari, F. (2013). Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Colloids and Surfaces B: Biointerfaces, 112 245–254. DOI: 10.1016/j.colsurfb.2013.08.004.

    CAS  Article  Google Scholar 

  • Moussavi, G., & Khosravi, R. (2011). The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chemical Engineering Research and Design, 89 2182–2189. DOI: 10.1016/j.cherd.2010.11.024.

    CAS  Article  Google Scholar 

  • Pathania, D., Sharma, S., & Singh, P. (2013). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.arabjc.2013.04.021.

  • Peydayesh, M., & Rahbar-Kelishami, A. (2015). Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 21 1014–1019. DOI: 10.1016/j.jiec.2014.05.010.

    CAS  Article  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177 70–80. DOI: 10.1016/j.jhazmat.2009.12.047.

    CAS  Article  Google Scholar 

  • Raghu, S., Lee, C. W., Chellammal, S., Palanichamy, S., & Basha, C. A. (2009). Evaluation of electrochemical oxidation techniques for degradation of dye effluents—A comparative approach. Journal of Hazardous Materials, 171 748–754. DOI: 10.1016/j.jhazmat.2009.06.063.

    CAS  Article  Google Scholar 

  • Rastogi, K., Sahu, J. N., Meikap, B. C., & Biswas, M. N. (2008). Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone. Journal of Hazardous Materials, 158 531–540. DOI: 10.1016/j.jhazmat.2008.01.105.

    CAS  Article  Google Scholar 

  • Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164 53–60. DOI: 10.1016/j.jhazmat.2008.07.131.

    CAS  Article  Google Scholar 

  • Ullah, R., Hussain, I., & Ahmad, S. (2013). Diocanol; one new phenol derivative isolated and characterized from Urtica dioica. Arabian Journal of Chemistry, in press. DOI: 10.1016/j.arabjc.2013.03.009.

  • Vieira Chagas, N., Pércio Quinaia, S., Jacó Anaissi, F., Meira Santos, J., Felsner, M. L., Justi, K. C. (2014). Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption. Chemical Papers, 68 553–563. DOI: 10.2478/s11696-013-0472-z.

    Google Scholar 

  • Weng, C. H., & Pan, Y. F. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144 355–362. DOI: 10.1016/j.jhazmat.2006.09.097.

    CAS  Article  Google Scholar 

  • Yang, Z., Yang, H., Jiang, Z. W., Cai, T., Li, H. J., Li, H. B., Li, A. M., & Cheng, R. S. (2013). Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. Journal of Hazardous Materials, 254–255 36–45. DOI: 10.1016/j.jhazmat.2013.03.053.

    Article  Google Scholar 

  • Yao, Y. J., Xu, F. F., Chen, M., Xu, Z. X., & Zhu, Z. W. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 101 3040–3046. DOI: 10.1016/j.biortech.2009.12.042.

    CAS  Article  Google Scholar 

  • Zhang, J., Cai, D. Q., Zhang, G. L., Cai, C. J., Zhang, C. L., Qiu, G. N., Zheng, K., & Wu, Z. Y. (2013). Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Applied Clay Science, 83–84 137–143. DOI: 10.1016/j.clay.2013.08.033.

    Article  Google Scholar 

  • Zhao, M. F., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112 419–412. DOI: 10.1016/j.micromeso.2007.10.018.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toraj Mohammadi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peydayesh, M., Isanejad, M., Mohammadi, T. et al. Assessment of Urtica as a low-cost adsorbent for methylene blue removal: kinetic, equilibrium, and thermodynamic studies. Chem. Pap. 69, 930–937 (2015). https://doi.org/10.1515/chempap-2015-0097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0097

Keywords

  • Urtica
  • methylene blue (MB)
  • adsorption
  • isotherm
  • kinetics
  • thermodynamics