Skip to main content

Newly synthesized indolizine derivatives — antimicrobial and antimutagenic properties

Abstract

A series of indolizine derivatives have been synthesized and subjected to antibacterial screening studies. Antibacterial activity of 21 derivatives was investigated against Staphylococcus aureus, Mycobacterium smegmatis, Salmonella typhimurium and Escherichia coli; also, the sensitivity of model yeast Candida parapsilosis and some model filamentous fungi Aspergillus fumigatus, Alternaria alternata, Botrytis cinerea and Microsporum gypseum was tested. Newly synthesized indolizine derivatives have shown selective toxicity to Gram-positive bacteria S. aureus and were also considered to be able to inhibit the acidoresistant rod M. smegmatis. Derivative XXI has shown the highest inhibition effect with the bacteriostatic effect on the cells at the concentration of 25 µg mL−1. The best antifungal activity has been detected in the presence of derivative XIII. Derivative XIII did also affect the morphology of hyphal tips of B. cinerea, which led to enhanced ramification of hyphae. Finally, the antimutagenic activity of derivatives was investigated. Significant antimutagenic activity was registered in case of derivative VIII. The number of induced revertants by mutagen [2-(5-nitrofuryl)acrylic acid] was decreased almost to the level of spontaneous revertants in the lowest applied concentration (50 µg per plate).

This is a preview of subscription content, access via your institution.

References

  • Brandi, A., Cicchi, S., Cordero, F. M., Frignoli, R., Goti, A., Picasso, S., & Vogel, P. (1995). Assignment of the absolute configuration of natural lentiginosine by synthesis and enzymic assays of optically pure (+) and (−)-enantiomers. Journal of Organic Chemistry, 60 6806–6812. DOI: 10.1021/jo00126a033.

    CAS  Article  Google Scholar 

  • Clinical Laboratory Standard Institute (2014). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard—Eight edition, CLSI M7-A9. Wayne, PA, USA: Clinical Laboratory Standard Institute.

    Google Scholar 

  • Couture, A., Deniau, E., Grandclaudon, P., Lebrun, S., Léonce, S., Renard, P., & Pfeiffer, B. (2000). First synthesis and pharmacological evaluation of benzoindolizidine and benzoquinolizidine analogues of α-and β-peltatin. Bioorganic & Medicinal Chemistry, 8 2113–2125. DOI: 10.1016/s0968-0896(00)00130-9.

    CAS  Article  Google Scholar 

  • Darwish, E. S. (2008). Facile synthesis of heterocycles via 2-picolinium bromide and antimicrobial activities of the products. Molecules, 13 1066–1078. DOI: 10.3390/molecules13051066.

    CAS  Article  Google Scholar 

  • Dudová, B., Hudecová, D., Pokorný, R., Mičková, M., Palicová, M., Segl’a, P., & Melník, M. (2002). Copper complexes with bioactive ligands. Part II — Antifungal activity. Folia Microbiologica, 47 225–229. DOI: 10.1007/bf02817642.

    Article  Google Scholar 

  • Foster, C., Ritchie, M., Selwood, D. L., & Snowden, W. (1995). Synthesis and anti-herpes activity of a series of indolizines. Antiviral Chemistry & Chemotherapy, 6 289–297.

    CAS  Article  Google Scholar 

  • Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P., & Chatelain, P. (1992). A novel class of calcium-entry blockers: the 1 [[4-(aminoalkoxy)-phenyl]sulfonyl]indolizines. Journal of Medicinal Chemistry, 35 981–988. DOI: 10.1021/jm00084a002.

    CAS  Article  Google Scholar 

  • Gundersen, L. L., Negussie, A. H., Rise, F., & Østby, O. B. (2003). Antimycobacterial activity of 1-substituted indolizines. Archiv der Pharmazie, 336 191–195. DOI: 10.1002/ardp.200390019.

    CAS  Article  Google Scholar 

  • Gundersen, L. L., Charnock, C., Negussie, A. H., Rise, F., & Teklu, S. (2007). Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 30 26–35. DOI: 10.1016/j.ejps.2006.09.006.

    CAS  Article  Google Scholar 

  • Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D., & Kumaran, S. (2003). A quantitative structure-activity relationship study on a novel class of calcium-entry blockers: 1-[4-(aminoalkoxy) phenylsulphonyl]indolizines. European Journal of Medicinal Chemistry, 38 867–873. DOI: 10.1016/j.ejmech.2003.08.001.

    CAS  Article  Google Scholar 

  • Hazra, A., Mondal, S., Maity, A., Naskar, S., Saha, P., Paira, R., Sahu, K. B., Paira, P., Ghosh, S., Sinha, C., Samanta, A., Banerjee, S., & Mondal, N. B. (2011). Amberlite-IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo[1,2-a]quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products. European Journal of Medicinal Chemistry, 46 2132–2140. DOI: 10.1016/j.ejmech.2011.02.066.

    CAS  Article  Google Scholar 

  • Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M., & Linden, A. (2003). 3-(4-Chlorobenzoyl)-7-(N, N-dimethylamino)-1-phenylindolizine and 3-(2,4-dichlorobenzoyl)-7-(N,N-dimethylamino)-1-phenylindolizine. Acta Crystallographica Section C: Crystal Structure Communications, 59, o703–o705. DOI: 10.1107/s0108270103023540.

    CAS  Article  Google Scholar 

  • Hempel, A., Camerman, N., Mastropaolo, D., & Camerman, A. (1993). Glucosidase inhibitors: structures of deoxynojirimycin and castanospermine. Journal of Medicinal Chemistry, 36 4082–4086. DOI: 10.1021/jm00077a012.

    CAS  Article  Google Scholar 

  • Hudecová, D., Varečka, E., Vollek, V., & Betina, V. (1994). Growth and morphogenesis of Botrytis cinerea. Effects of exogenous calcium ions, calcium channel blockers and cyclosporin A. Folia Microbiologica, 39 269–275. DOI: 10.1007/bf02814311.

    Article  Google Scholar 

  • Jørgensen, A. S., Jacobsen, P., Christiansen, L. B., Bury, P. S., Kanstrup, A., Thorpe, S. M., Bain, S., Naerum, L., & Wassermann, K. (2000). Synthesis and pharmacology of a novel pyrrolo [2,1,5-cd] indolizine (NNC 45-0095), a high affinity non-steroidal agonist for the estrogen receptor. Bioorganic & Medicinal Chemistry Letters, 10 399–402. DOI: 10.1016/s0960-894x(00)00015-9.

    Article  Google Scholar 

  • Koul, A., Choidas, A., Treder, M., Tyagi, A. K., Drlica, K., Singh, Y., & Ullrich, A. (2000). Cloning and characterization of secretory tyrosine fosfatases of Mycobacterium tuberculosis. Journal of Bacteriology, 182 5425–5432. DOI: 10.1128/jb.182.19.5425-5432.2000.

    CAS  Article  Google Scholar 

  • Kubo, A., Nakai, T., Koizumi, Y., Kitahara, Y., Saito, N., Mikami, Y., Yazava, K., & Uno, J. (1996). A Synthesis of the derivatives of 1,2,3,5,10,10a-hexahydrobenz[f]indoline-6,9-dione having antifungal activity as a simple model of Saframycin A. Heterocycles, 42 195–211. DOI: 10.3987/com-94-S5-1.

    CAS  Article  Google Scholar 

  • Marchalin, S., Decroix, B., & Morel, J. (1993). Synthesis of indolizine-6,9-diones annelated to a thiophene ring. Acta Chemica Scandinavica, 47 287–291. DOI: 10.3891/acta.chem.scand.47-0287.

    CAS  Article  Google Scholar 

  • Marchalin, S., Szemes, F., Bar, N., & Decroix, B. (1999). Synthesis of enantiopure (S)-thieno[f]indolizidines. Heterocycles, 50 445–452. DOI: 10.3987/com-98-s(h)10.

    CAS  Article  Google Scholar 

  • Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113 173–215. DOI: 10.1016/0165-1161(83)90010-9.

    CAS  Article  Google Scholar 

  • Mitsumori, T., Bendikov, M., Dautel, O., Wudl, F., Shioya, T., Sato, H., & Sato, Y. (2004). Synthesis and properties of highly fluorescent indolizino [3,4,5-ab] isoindoles. Journal of the American Chemical Society, 126 16793–16803. DOI: 10.1021/ja049214x.

    CAS  Article  Google Scholar 

  • Nasir, A. I., Gundersen, L. L., Rise, F., Antonsen, Ø., Kristensen, T., Langhelle, B., Bast, A., Custers, I., Haenen, G. R. M. M., & Wikström, H. (1998). Inhibition of lipid peroxidation mediated by indolizines. Bioorganic & Medicinal Chemistry Letters, 8 1829–1832. DOI: 10.1016/s0960-894x(98)00313-8.

    CAS  Article  Google Scholar 

  • Olejníková, P., Kurucová, M., Švorc, E., & Marchalín, Š. (2013). Induction of resistance in Mycobacterium smegmatis. Canadian Journal of Microbiology, 59 126–129. DOI: 10.1139/cjm-2012-0438.

    Article  Google Scholar 

  • Pearson, W. H., & Guo, L. (2001). Synthesis and mannosidase inhibitory activity of 3-benzyloxymethyl analogs of swainsonine. Tetrahedron Letters, 42 8267–8271. DOI: 10.1016/s0040-4039(01)01777-4.

    CAS  Article  Google Scholar 

  • Šafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Comesse, S., & Daïch, A. (2009a). Synthesis and reductive desulfurization of chiral non-racemic benzothienoindolizines. An efficient approach to a novel bioactive tylophorine alkaloid analogue and 6-phenylindolizidine. Tetrahedron: Asymmetry, 20 2137–2144. DOI: 10.1016/j.tetasy.2009.08.010.

    Article  Google Scholar 

  • Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, E., Vrábel, V., & Daïch, A. (2009b). Highly diastereoselective approach to novel phenylindolizidinols via benzothieno analogues of tylophorine based on reductive desulfurization of benzo[b] thiophene. Tetrahedron: Asymmetry, 20 626–634. DOI: 10.1016/j.tetasy.2009.02.042.

    Article  Google Scholar 

  • Sonnenschein, H., Hennrich, G., Resch-Genger, U., & Schulz, B. (2000). Fluorescence and UV/Vis spectroscopic behavior of novel biindolizines. Dyes and Pigments, 46 23–27. DOI: 10.1016/s0143-7208(00)00032-2.

    CAS  Article  Google Scholar 

  • Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E., & Rise, F. (2005). Indolizine 1-sulfonates as potent inhibitors of 15-lipoxygenase from soybeans. Bioorganic & Medicinal Chemistry, 13 3127–3139. DOI: 10.1016/j.bmc.2005.02.056.

    CAS  Article  Google Scholar 

  • Toyota, M., Komori, C., & Ihara, M. (2000). A concise formal total synthesis of mappicine and nothapodytine B via an intramolecular hetero Diels-Alder reaction. Journal of Organic Chemistry, 65 7110–7113. DOI: 10.1021/jo000816i.

    CAS  Article  Google Scholar 

  • Vaught, J. L., Carson, J. R., Carmosin, R. J., Blum, P. S., Persico, F. J., Hageman, W. E., Shank, R. P., & Raffa, R. B. (1990). Antinociceptive action of McN-5195 in rodents: a structurally novel (indolizine) analgesic with a nonopioid mechanism of action. Journal of Pharmacology and Experimental Therapeutics, 255 1–10.

    CAS  Google Scholar 

  • Vemula, V. R., Vurukonda, S., & Bairi, C. K. (2011). Indolizine derivatives: recent advances and potential pharmacological activities. International Journal of Pharmaceutical Sciences Review & Research, 11 159–163.

    CAS  Google Scholar 

  • Vlahovici, A., Andrei, M., & Druţă, I. (2002). A study of the dimethyl-3-benzoyl-5-(2′-pyridyl)-indolizine-1,2-dicarboxylate exciplexes with alcohols. Journal of Luminescence, 96 279–285. DOI: 10.1016/s0022-2313(01)00226-5.

    CAS  Article  Google Scholar 

  • Wavefunction (2006). Spartan’06 [computer software]. Irvine, CA, USA: Wavefunction.

    Google Scholar 

  • Weide, T., Arve, L., Prinz, H., Waldmann, H., & Kessler, H. (2006). Substituted indolizine-1-carbonitrile derivatives as phosphatase inhibitors. Bioorganic & Medical Chemistry Letters, 16 59–63. DOI: 10.1016/j.bmcl.2005.09.051.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Olejníková.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olejníková, P., Birošová, L., Švorc, L. et al. Newly synthesized indolizine derivatives — antimicrobial and antimutagenic properties. Chem. Pap. 69, 983–992 (2015). https://doi.org/10.1515/chempap-2015-0093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0093

Keywords

  • indolizine derivative
  • antimicrobial activity