Brandi, A., Cicchi, S., Cordero, F. M., Frignoli, R., Goti, A., Picasso, S., & Vogel, P. (1995). Assignment of the absolute configuration of natural lentiginosine by synthesis and enzymic assays of optically pure (+) and (−)-enantiomers. Journal of Organic Chemistry, 60 6806–6812. DOI: 10.1021/jo00126a033.
CAS
Article
Google Scholar
Clinical Laboratory Standard Institute (2014). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard—Eight edition, CLSI M7-A9. Wayne, PA, USA: Clinical Laboratory Standard Institute.
Google Scholar
Couture, A., Deniau, E., Grandclaudon, P., Lebrun, S., Léonce, S., Renard, P., & Pfeiffer, B. (2000). First synthesis and pharmacological evaluation of benzoindolizidine and benzoquinolizidine analogues of α-and β-peltatin. Bioorganic & Medicinal Chemistry, 8 2113–2125. DOI: 10.1016/s0968-0896(00)00130-9.
CAS
Article
Google Scholar
Darwish, E. S. (2008). Facile synthesis of heterocycles via 2-picolinium bromide and antimicrobial activities of the products. Molecules, 13 1066–1078. DOI: 10.3390/molecules13051066.
CAS
Article
Google Scholar
Dudová, B., Hudecová, D., Pokorný, R., Mičková, M., Palicová, M., Segl’a, P., & Melník, M. (2002). Copper complexes with bioactive ligands. Part II — Antifungal activity. Folia Microbiologica, 47 225–229. DOI: 10.1007/bf02817642.
Article
Google Scholar
Foster, C., Ritchie, M., Selwood, D. L., & Snowden, W. (1995). Synthesis and anti-herpes activity of a series of indolizines. Antiviral Chemistry & Chemotherapy, 6 289–297.
CAS
Article
Google Scholar
Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P., & Chatelain, P. (1992). A novel class of calcium-entry blockers: the 1 [[4-(aminoalkoxy)-phenyl]sulfonyl]indolizines. Journal of Medicinal Chemistry, 35 981–988. DOI: 10.1021/jm00084a002.
CAS
Article
Google Scholar
Gundersen, L. L., Negussie, A. H., Rise, F., & Østby, O. B. (2003). Antimycobacterial activity of 1-substituted indolizines. Archiv der Pharmazie, 336 191–195. DOI: 10.1002/ardp.200390019.
CAS
Article
Google Scholar
Gundersen, L. L., Charnock, C., Negussie, A. H., Rise, F., & Teklu, S. (2007). Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 30 26–35. DOI: 10.1016/j.ejps.2006.09.006.
CAS
Article
Google Scholar
Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D., & Kumaran, S. (2003). A quantitative structure-activity relationship study on a novel class of calcium-entry blockers: 1-[4-(aminoalkoxy) phenylsulphonyl]indolizines. European Journal of Medicinal Chemistry, 38 867–873. DOI: 10.1016/j.ejmech.2003.08.001.
CAS
Article
Google Scholar
Hazra, A., Mondal, S., Maity, A., Naskar, S., Saha, P., Paira, R., Sahu, K. B., Paira, P., Ghosh, S., Sinha, C., Samanta, A., Banerjee, S., & Mondal, N. B. (2011). Amberlite-IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo[1,2-a]quinolines and isoquinolines: Antibacterial and antifungal evaluation of the products. European Journal of Medicinal Chemistry, 46 2132–2140. DOI: 10.1016/j.ejmech.2011.02.066.
CAS
Article
Google Scholar
Hema, R., Parthasarathi, V., Sarkunam, K., Nallu, M., & Linden, A. (2003). 3-(4-Chlorobenzoyl)-7-(N, N-dimethylamino)-1-phenylindolizine and 3-(2,4-dichlorobenzoyl)-7-(N,N-dimethylamino)-1-phenylindolizine. Acta Crystallographica Section C: Crystal Structure Communications, 59, o703–o705. DOI: 10.1107/s0108270103023540.
CAS
Article
Google Scholar
Hempel, A., Camerman, N., Mastropaolo, D., & Camerman, A. (1993). Glucosidase inhibitors: structures of deoxynojirimycin and castanospermine. Journal of Medicinal Chemistry, 36 4082–4086. DOI: 10.1021/jm00077a012.
CAS
Article
Google Scholar
Hudecová, D., Varečka, E., Vollek, V., & Betina, V. (1994). Growth and morphogenesis of Botrytis cinerea. Effects of exogenous calcium ions, calcium channel blockers and cyclosporin A. Folia Microbiologica, 39 269–275. DOI: 10.1007/bf02814311.
Article
Google Scholar
Jørgensen, A. S., Jacobsen, P., Christiansen, L. B., Bury, P. S., Kanstrup, A., Thorpe, S. M., Bain, S., Naerum, L., & Wassermann, K. (2000). Synthesis and pharmacology of a novel pyrrolo [2,1,5-cd] indolizine (NNC 45-0095), a high affinity non-steroidal agonist for the estrogen receptor. Bioorganic & Medicinal Chemistry Letters, 10 399–402. DOI: 10.1016/s0960-894x(00)00015-9.
Article
Google Scholar
Koul, A., Choidas, A., Treder, M., Tyagi, A. K., Drlica, K., Singh, Y., & Ullrich, A. (2000). Cloning and characterization of secretory tyrosine fosfatases of Mycobacterium tuberculosis. Journal of Bacteriology, 182 5425–5432. DOI: 10.1128/jb.182.19.5425-5432.2000.
CAS
Article
Google Scholar
Kubo, A., Nakai, T., Koizumi, Y., Kitahara, Y., Saito, N., Mikami, Y., Yazava, K., & Uno, J. (1996). A Synthesis of the derivatives of 1,2,3,5,10,10a-hexahydrobenz[f]indoline-6,9-dione having antifungal activity as a simple model of Saframycin A. Heterocycles, 42 195–211. DOI: 10.3987/com-94-S5-1.
CAS
Article
Google Scholar
Marchalin, S., Decroix, B., & Morel, J. (1993). Synthesis of indolizine-6,9-diones annelated to a thiophene ring. Acta Chemica Scandinavica, 47 287–291. DOI: 10.3891/acta.chem.scand.47-0287.
CAS
Article
Google Scholar
Marchalin, S., Szemes, F., Bar, N., & Decroix, B. (1999). Synthesis of enantiopure (S)-thieno[f]indolizidines. Heterocycles, 50 445–452. DOI: 10.3987/com-98-s(h)10.
CAS
Article
Google Scholar
Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research, 113 173–215. DOI: 10.1016/0165-1161(83)90010-9.
CAS
Article
Google Scholar
Mitsumori, T., Bendikov, M., Dautel, O., Wudl, F., Shioya, T., Sato, H., & Sato, Y. (2004). Synthesis and properties of highly fluorescent indolizino [3,4,5-ab] isoindoles. Journal of the American Chemical Society, 126 16793–16803. DOI: 10.1021/ja049214x.
CAS
Article
Google Scholar
Nasir, A. I., Gundersen, L. L., Rise, F., Antonsen, Ø., Kristensen, T., Langhelle, B., Bast, A., Custers, I., Haenen, G. R. M. M., & Wikström, H. (1998). Inhibition of lipid peroxidation mediated by indolizines. Bioorganic & Medicinal Chemistry Letters, 8 1829–1832. DOI: 10.1016/s0960-894x(98)00313-8.
CAS
Article
Google Scholar
Olejníková, P., Kurucová, M., Švorc, E., & Marchalín, Š. (2013). Induction of resistance in Mycobacterium smegmatis. Canadian Journal of Microbiology, 59 126–129. DOI: 10.1139/cjm-2012-0438.
Article
Google Scholar
Pearson, W. H., & Guo, L. (2001). Synthesis and mannosidase inhibitory activity of 3-benzyloxymethyl analogs of swainsonine. Tetrahedron Letters, 42 8267–8271. DOI: 10.1016/s0040-4039(01)01777-4.
CAS
Article
Google Scholar
Šafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Comesse, S., & Daïch, A. (2009a). Synthesis and reductive desulfurization of chiral non-racemic benzothienoindolizines. An efficient approach to a novel bioactive tylophorine alkaloid analogue and 6-phenylindolizidine. Tetrahedron: Asymmetry, 20 2137–2144. DOI: 10.1016/j.tetasy.2009.08.010.
Article
Google Scholar
Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, E., Vrábel, V., & Daïch, A. (2009b). Highly diastereoselective approach to novel phenylindolizidinols via benzothieno analogues of tylophorine based on reductive desulfurization of benzo[b] thiophene. Tetrahedron: Asymmetry, 20 626–634. DOI: 10.1016/j.tetasy.2009.02.042.
Article
Google Scholar
Sonnenschein, H., Hennrich, G., Resch-Genger, U., & Schulz, B. (2000). Fluorescence and UV/Vis spectroscopic behavior of novel biindolizines. Dyes and Pigments, 46 23–27. DOI: 10.1016/s0143-7208(00)00032-2.
CAS
Article
Google Scholar
Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E., & Rise, F. (2005). Indolizine 1-sulfonates as potent inhibitors of 15-lipoxygenase from soybeans. Bioorganic & Medicinal Chemistry, 13 3127–3139. DOI: 10.1016/j.bmc.2005.02.056.
CAS
Article
Google Scholar
Toyota, M., Komori, C., & Ihara, M. (2000). A concise formal total synthesis of mappicine and nothapodytine B via an intramolecular hetero Diels-Alder reaction. Journal of Organic Chemistry, 65 7110–7113. DOI: 10.1021/jo000816i.
CAS
Article
Google Scholar
Vaught, J. L., Carson, J. R., Carmosin, R. J., Blum, P. S., Persico, F. J., Hageman, W. E., Shank, R. P., & Raffa, R. B. (1990). Antinociceptive action of McN-5195 in rodents: a structurally novel (indolizine) analgesic with a nonopioid mechanism of action. Journal of Pharmacology and Experimental Therapeutics, 255 1–10.
CAS
Google Scholar
Vemula, V. R., Vurukonda, S., & Bairi, C. K. (2011). Indolizine derivatives: recent advances and potential pharmacological activities. International Journal of Pharmaceutical Sciences Review & Research, 11 159–163.
CAS
Google Scholar
Vlahovici, A., Andrei, M., & Druţă, I. (2002). A study of the dimethyl-3-benzoyl-5-(2′-pyridyl)-indolizine-1,2-dicarboxylate exciplexes with alcohols. Journal of Luminescence, 96 279–285. DOI: 10.1016/s0022-2313(01)00226-5.
CAS
Article
Google Scholar
Wavefunction (2006). Spartan’06 [computer software]. Irvine, CA, USA: Wavefunction.
Google Scholar
Weide, T., Arve, L., Prinz, H., Waldmann, H., & Kessler, H. (2006). Substituted indolizine-1-carbonitrile derivatives as phosphatase inhibitors. Bioorganic & Medical Chemistry Letters, 16 59–63. DOI: 10.1016/j.bmcl.2005.09.051.
CAS
Article
Google Scholar