Skip to main content

Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate

Abstract

A facile and rapid procedure for the synthesis of dimethyl-2-[3-amino-5-(2-methoxy-2-oxoethylidene)-4-oxothiazolidin-2-ylidenehydrazono]succinate, dimethyl {[2-alkylidenehydrazono)-5-(2-methoxy-2-oxoethylidene)-4-oxothiazolidin-3-yl)amino]succinate and methyl (4-amino-5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazine-6-yl)acetate affording yields of 61–54 %, 22–18 % and 14–11 %, respectively, via a condensation reaction of dimethyl acetylenedicarboxylate (DMAD) with (substituted ylidene)thiocarbonohydrazides. One of the products was conclusively confirmed by single-crystal X-ray analysis. A mechanism for the formation of the products is presented.

This is a preview of subscription content, access via your institution.

References

  • Ahmadi, A., Saidi, K., & Khabazzadeh, H. (2009). An efficient synthesis of substituted 2-iminothiazolidin-4-one and thiadiazoloquinazolinone derivatives. Molecular Diversity, 13 353–356. DOI: 10.1007/s11030-009-9124-1.

    CAS  Article  Google Scholar 

  • Alizadeh, A., Noaparast, Z., Sabahano, H., & Zohreh, N. (2010). One-pot, pseudo-five-component synthesis of bis[2-(arylimino)-1,3-thiazolidin-4-ones]. Helvatica Chimica Acta, 93 1401–1406. DOI: 10.1002/hlca.200900402.

    CAS  Article  Google Scholar 

  • Aly, A. A., Brown, A. B., & Hassan, A. A. (2014). Heterocycles from the reaction of thione groups with acetylenic bonds. Advances in Heterocyclic Chemistry, 113 245–304. DOI: 10.1016/b978-0-12-800170-7.00005-5.

    CAS  Article  Google Scholar 

  • Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C., & Zani, F. (2005). Antimicrobial and mutagenic properties of organotin(IV) complexes with isatin and N-alkylisatin bisthiocarbonohydrazones. Journal of Inorganic Biochemistry, 99 397–408. DOI: 10.1016/j.jinorgbio.2004.10.008.

    CAS  Article  Google Scholar 

  • Balázs, F., Kudar, V., Csámpai, A., Nagy, T. Z., & Sohár, P. (2007). Synthesis, IR-, NMR-, DFT and X-ray study of ferrocenyl heterocycles from thiosemicarbazones. Part 21: Study on ferrocenes. Journal of Organometallic Chemistry, 692 5621–5632. DOI: 10.1016/j.jorganchem.2007.09.017.

    Article  Google Scholar 

  • Balázs, F., Csámpai, A., Nagy, T. Z., Czugler, M., & Sohár, P. (2009). Synthesis, ring transformations, IR-, NMR and DFT study of heterocycles with two ferrocenyl units. Journal of Organometallic Chemistry, 694 3732–3741. DOI: 10.1016/j.jorganchem.2009.07.038.

    Article  Google Scholar 

  • Bekircan, O., & Bekats, H. (2006). Synthesis of new bis-1,2,4-triazole derivatives. Molecules, 11 469–477. DOI: 10.3390/11060469.

    CAS  Article  Google Scholar 

  • Böhm, S., Tomaščiková, J., Imrich, J., Danihel, I., Kristian, P., Koch, A., Kleinpeter, E., & Klika, K. D. (2009). Computational study to assign structure, tautomerism, E/Z and s-cis/s-trans isomerism, π-delocalization, partial aromaticity and the ring size of 1,3-thiazolidin-4-ones and 1,3-thiazin-4-ones formed from thiosemicarbazides. Journal of Molecular Structure: Theochem, 916 105–118. DOI: 10.1016/j.theochem.2009.09.019.

    Article  Google Scholar 

  • Dabholkar, V. V., & Ravi, T. D. (2010). Efficient synthesis of some novel spiro heterocycles containing triazine nucleus and their microbiological activity. Indian Journal of Chemistry, 49 593–597.

    Google Scholar 

  • Darehkordi, A., Saidi, K., & Islami, M. R. (2007). Preparation of heterocyclic compounds by reaction of dimethyl and diethyl acetylenedicarboxylate (DMAD, DEAD) with thiosemicarbazone derivatives. Arkivoc, 2007 180–188.

    Article  Google Scholar 

  • Dimmock, J. R., Kumar, P., Allen, T. M., Kao, G. Y., Halleran, S., Balzarini, J., & de Clercq, E. (1997). Synthesis and cytotoxic evaluation of some carbohydrazones and thiocarbohydrazones of various unsaturated ketones and related Mannich bases. Die Pharmazie, 52 182–186.

    CAS  Google Scholar 

  • Dvorko, M., Y., Albanov, A. I., Chipanina, N. N., Sherstyannikova, L. V., Samoilov, V. G., Komarova, T. N., & Glotova, T. E. (2006). New functionalized pyrazolines from 1-aroyl-2-phenylacetylenes and thiocarbonohydrazides. Chemistry of Heterocyclic Compounds, 42 1421–1426. DOI: 10.1007/s10593-006-0258-0.

    CAS  Article  Google Scholar 

  • Ferrari, M. B., Capacchi, S., Pelosi, G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S., & Lunghi, P. (1999). Synthesis, structural characterization and biological activity of helicin thiosemicarbazone monohydrate and a copper(II) complex of salicylaldehyde thiosemicarbazone. Inorganica Chimica Acta, 286 134–141. DOI: 10.1016/s0020-1693(98)00383-1.

    Article  Google Scholar 

  • Glotova, T. E., Dvorko, M. Y., Samoilov, V. G., & Ushakov, I. A. (2008). New 1,3,4-thiadiazole derivatives from 1-benzylidenethiocarbonohydrazides and 3-bromo-1-phenyl-prop-2-yn-1-one. Russian Journal of Organic Chemistry, 44 866–869. DOI: 10.1134/s1070428008060158.

    CAS  Article  Google Scholar 

  • Grangarapu, K., Manda, S., Jallapally, A., Thota, S., Karki, S. S., Balzarini, J., De Clercq, E., & Tokuda, H. (2014). Synthesis of thiocarbohydrazide and carbohydrazide derivatives as possible biologically active agents. Medicinal Chemistry Research, 23 1046–1056. DOI: 10.1007/s00044-013-0684-3.

    Article  Google Scholar 

  • Hassan, A. A., Ibrahim, Y. R., El-Sheref, E. M., Aly, A. A., Bräse, S., & Brown, A. B. (2012a). Novel synthesis of pyrazolyloxothiazolidine derivatives. Journal of Heterocyclic Chemistry, 49 1380–1385. DOI: 10.1002/jhet.1023.

    CAS  Article  Google Scholar 

  • Hassan, A. A., Ibrahim, Y. R., El-Sheref, E. M., & Brown, A. B. (2012b). Novel synthesis of oxothiazolidine derivatives. Journal of Heterocyclic Chemistry, 49 1054–1058. DOI: 10.1002/jhet.935.

    CAS  Article  Google Scholar 

  • Hassan, A. A., Ibrahim, Y. R., Aly, A. A., El-Sheref, E. M., & Yamato, T. (2013). Reactions of dimethyl ethynedicarboxylate with (substituted ethylidene)hydrazinecarbothioamides. Journal of Heterocyclic Chemistry, 50 473–477. DOI: 10.1002/jhet.712.

    CAS  Article  Google Scholar 

  • Hassan, A. A., Aly, A. A., Bedair, T. I. M., Brown, A. B., & El-Emary, T. I. (2014a). A facile method for the synthesis of hydrazine-4-oxothiazolidine and imino-5-oxothiadiazine derivatives from 1,4-disubstituted thiosemicarbazides. Journal of Heterocyclic Chemistry, 51 44–49. DOI: 10.1002/jhet.1655.

    CAS  Article  Google Scholar 

  • Hassan, A. A., Mohamed, N. K., Abd El-Haleem, L. E., Bräse, S., & Nieger, M. (2014b). Synthesis of some new heteroylhydrazono-1,3-thiazolidin-4-ones. Journal of Heterocyclic Chemistry, in press. DOI: 10.1002/jhet.2240.

  • Heravi, M. M., Nami, N., Neumüller, B., Oskooie, H. A., & Hekmatshoar, R. (2006). Synthesis of some trisubstituted thiazolidin-4-ones. Journal of Chemical Research, 2006 722–724. DOI: 10.3184/030823406779173442.

    Article  Google Scholar 

  • Heravi, M. M., & Alishiri, T. (2014). Dimethyl acetylenedicarboxylate as a building block in heterocyclic synthesis. Advances in Heterocyclic Chemistry, 113 1–66. DOI: 10.1016/b978-0-12-800170-7.00001-8.

    CAS  Article  Google Scholar 

  • Imrich, J., Tomaščiková, J., Danihel, I., Kristian, P., Böhm, S., & Klika, K. D. (2010). Selective formation of 5- or 6-membered rings, 1,3-thiazolidin-4-one vs. 1,3-thiazin-4-one, from acridine thiosemicarbazides by the use of ethyne acid esters. Heterocycles, 80 489–503. DOI: 10.3987/com-09-s(s)56.

    CAS  Article  Google Scholar 

  • Kabashima, S., Okawara, T., Yamasaki, T., & Furukawa, M. (1990). Synthesis of novel 1,3-thiazolidines and 1,3,4-thiadiazolines from thiocarbohydrazines. Heterocycles, 31 1129–1139. DOI: 10.3987/com-90-5380.

    CAS  Article  Google Scholar 

  • Li, Z., Feng, X., & Zhao, Y. L. (2008). Microwave induced efficient synthesis of (un)substituted benzaldehyde (5-aryl-1,3,4-thiadiazol-2-yl)hydrazones using silica-supported dichlorophosphate as a recoverable dehydrant. Journal of Heterocyclic Chemistry, 45 1489–1492. DOI: 10.1002/jhet.5570450540.

    CAS  Article  Google Scholar 

  • Naik, A. D., Annigeri, S. M., Gangadharmath, U. B., Revankar, V. K., & Mahale, V. B. (2002). Thiocarbohydrazide as “diamine” to construct macrocyclic and side-off compart-mental ligands. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 43 291–297. DOI: 10.1023/a:1021289104845.

    CAS  Article  Google Scholar 

  • Nakarishi, K., & Solomon, P. H. (1977). Infrared absorption spectroscopy. San Francisco, CA, USA: Holden-Day.

    Google Scholar 

  • Rajendran, G., & Jain, S. R. (1984). Structural assignment of monothiocarbonohydrazones by 1H NMR spectroscopy. Organic Magnetic Resonance, 22 6–10. DOI: 10.1002/mrc.1270220103.

    CAS  Article  Google Scholar 

  • Rhee, S. H. (1972). Synthesis and evaluation of antimicrobial-antitumor activites of methylthiosemicarbazones and thiocarbohydrazones. Journal of the Pharmaceutical Society of Korea, 16 162–175.

    CAS  Google Scholar 

  • Sahoo, M. K. (2007). Dimethyl acetylene dicarboxylate. Synlett, 2007 2142–2143. DOI: 10.1055/s-2007-984894.

    Article  Google Scholar 

  • Schrader, B. (1989). Raman/Infrared atlas of organic compounds. Weinheim, Germany: Wiley.

    Google Scholar 

  • Sengupta, P., Ghosh, S., & Mak, T. C. W. (2001). A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium(II) and X-ray structural characterisation of the biologically active trans-[Ru(PPh3)2(L1H)2](L1H2 = pyridine 2,3-dicarboxylic acid). Polyhedron, 20 975–980. DOI: 10.1016/s0277-5387(01)00736-7.

    CAS  Article  Google Scholar 

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographic Section A, 64 112–122. DOI: 10.1107/s0108767307043930.

    CAS  Google Scholar 

  • Shi, Z. C., Zhao, Z. G., Liu, X. L., & Wu, L. L. (2011). Synthesis of new deoxycholic acid bis thiocarbazones under solvent-free conditions using microwave irradiation. Journal of Chemical Research, 35 198–201. DOI: 10.3184/174751911x12995267948561.

    CAS  Article  Google Scholar 

  • Socrates, G. (1980). Infrared characterization group frequencies. New York, NY, USA: Wiley.

    Google Scholar 

  • Tomaščiková, J., Imrich, J., Danihel, I., Böhm, S., Kristian, P., Pisarčíková, J., Sabol, M., & Klika, K. D. (2008a). Regioselectivity and tautomerism of novel five-membered ring nitrogen heterocycles formed via cyclocondensation of acylthiosemicarbazides. Molecules, 13 501–518. DOI: 10.3390/molecules13030501.

    Article  Google Scholar 

  • Tomaščiková, J., Danihel, I., Böhm, S., Imrich, J., Kristian, P., Potačňák, I., Čejka, J., & Klika, K. D. (2008b). Molecular and solid-state structure of methyl [2-(acridin-9-ylimino)-3-(tert-butylamino)-4-oxothiazolidin-5-ylidene]acetate. Journal of Molecular Structure, 875 419–426. DOI: 10.1016/j.molstruc.2007.05.030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa A. Hassan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.A., Abdel-Latif, F.F., Aziz, M.A. et al. Heterocyclisation of substituted ylidenethiocarbonohydrazides using dimethyl acetylenedicarboxylate. Chem. Pap. 69, 973–982 (2015). https://doi.org/10.1515/chempap-2015-0092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0092

Keywords

  • thiocarbonohydrazides
  • dimethyl acetylenedicarboxylate
  • hydrazonothiazolidinyl-succinates
  • aminothioxotriazinylacetate