Skip to main content
Log in

Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An efficient ionic liquid with both Brønsted acidic and Lewis basic sites, namely 1,4-dimethyl-1-(4-sulphobutyl)piperazinium hydrogen sulphate (IL1), was synthesised and characterised. IL1 is a “green”, homogeneous and reusable catalyst for: i) the synthesis of pyranopyrazoles (Va-Vj)and benzopyrans (VIa-VIj and VIIa-VIIf) at ambient temperature under solvent-free conditions and ii) the synthesis of amino-2-chromenes (VIIIa-VIIIi and IXa-IXi) and dihyropyrano[c]chromenes (Xa-Xi) at 80 °C under solvent-free conditions. The reactions were rapid with excellent product yields. In addition, the double Brønsted acid, 1,4-dimethyl-1,4-bis(4-sulphobutyl)piperazinium hydrogen sulphate (IL2), was prepared to evaluate the cooperation efficiency of their Brønsted acidic and Lewis basic sites as compared with the double Brønsted acidic sites in IL1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al’-Assar, F., Zelenin, K. N., Lesiovskaya, E. E., Bezhan, I. P., & Chakchir, B. A. (2002). Synthesis and pharmacological activity of 1-hydroxy-1-amino-, and 1-hydrazino-substituted 2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones. Pharmaceutical Chemistry Journal, 36, 598–603. DOI: 10.1023/a:1022665331722.

    Article  Google Scholar 

  • Al-Haiza, M. A., Mostafa, M. S., & El-Kady, M. Y. (2003). Synthesis and biological evaluation of some new coumarin derivatives. Molecules, 8, 275–286. DOI: 10.3390/80200275.

    Article  CAS  Google Scholar 

  • Balalaie, S., Bararjanian, M., Amani, A. M., & Movassagh, B. (2006). (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synlett, 2006, 263–266. DOI: 10.1055/s-2006-926227.

    Article  Google Scholar 

  • Ballini, R., Bigi, F., Conforti, M. L., De Santis, D., Maggi, R., Oppici, G., & Sartori, G. (2000). Multicomponent reactions under clay catalysis. Catalysis Today, 60, 305–309. DOI: 10.1016/s0920-5861(00)00347-3.

    Article  CAS  Google Scholar 

  • Banerjee, S., & Sereda, G. (2009). One-step, three-component synthesis of highly substituted pyridines using silica nanoparticleas reusablecatalyst. Tetrahedron Letters, 50, 6959–6962. DOI: 10.1016/j.tetlet.2009.09.137.

    Article  CAS  Google Scholar 

  • Banerjee, S., Horn, A., Khatri, H., & Sereda, G. (2011). A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Letters, 52, 1878–1881. DOI: 10.1016/j.tetlet.2011.02.031.

    Article  CAS  Google Scholar 

  • Bartók, M., Felföldi, K., Szöllösi, G., & Bartók, T. (1999). Rigid cinchona conformers in enantioselective catalytic reactions: new cinchona-modified platinum catalysts in the Orito reaction. Catalysis Letters, 61, 1–5. DOI: 10.1023/a:1019008519015.

    Article  Google Scholar 

  • Bonsignore, L., Loy, G., Secci, D., & Calignano, A. (1993). Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives. European Journal of Medicinal Chemistry, 28, 517–520. DOI: 10.1016/0223-5234(93)90020-f.

    Article  CAS  Google Scholar 

  • Bräse, S., Gil, C., & Knepper, K. (2002). The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. Bioorganic & Medicinal Chemistry, 10, 2415–2437. DOI: 10.1016/s0968-0896(02)00025-1.

    Article  Google Scholar 

  • Chen, L., Li, Y. Q., Huang, X. J., & Zheng, W. J. (2009). N, N-dimethylamino-functionalized basic ionic liquid catalyzed one-pot multicomponent reaction for the synthesis of 4H-benzo[b]pyran derivatives under solvent-free condition. Heteroatom Chemistry, 20, 91–94. DOI: 10.1002/hc.20516.

    Article  CAS  Google Scholar 

  • Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C., & Davis, J. H., Jr. (2002). Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. Journal of the American Chemical Society, 124, 5962–5963. DOI: 10.1021/ja026290w.

    Article  CAS  Google Scholar 

  • Darbarwar, M., & Sundaramurthy, V. (1982). Synthesis of coumarins with 3:4-fused ring systems and their physiological activity. Synthesis, 1982, 337–388. DOI: 10.1055/s-1982-29806.

    Article  Google Scholar 

  • Davis, J. H., Jr. (2004). Task-specific ionic liquids. Chemistry Letters, 33, 1072–1077. DOI: 10.1246/cl.2004.1072.

    Article  CAS  Google Scholar 

  • Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.

    Article  CAS  Google Scholar 

  • Fang, D., Zhou, X. L., Ye, Z. W., & Liu, Z. L. (2006). Brønsted acidic ionic liquids and their use as dual solvent-catalysts for Fischer esterifications. Industrial & Engineering Chemistry Research, 45, 7982–7984. DOI: 10.1021/ie060365d.

    Article  CAS  Google Scholar 

  • Fang, D., Zhang, H. B., & Liu, Z. L. (2010). Synthesis of 4H-benzopyrans catalyzed by acyclic acidic ionic liquids in aqueous media. Journal of Heterocyclic Chemistry, 47, 63–67. DOI: 10.1002/jhet.254.

    CAS  Google Scholar 

  • Firouzabadi, H., Iranpoor, N., Jafarpour, M., & Ghaderi, A. (2006). ZrOCl2·8H2O/silica gel as a new efficient and a highly water-tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 253, 249–251. DOI: 10.1016/j.molcata.2006.03.043.

    Article  CAS  Google Scholar 

  • Ganem, B. (2009). Strategies for innovation in multicomponent reaction design. Accounts of Chemical Research, 42, 463–472. DOI: 10.1021/ar800214s.

    Article  CAS  Google Scholar 

  • Gupta, N., Sonu, Kad, G. L., & Singh, J. (2007). Acidic ionic liquid [bmim]HSO4: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catalysis Communications, 8, 1323–1328. DOI: 10.1016/j.catcom.2006.11.030.

    Article  CAS  Google Scholar 

  • Habibi, D., Mahmoudi, N., & Marvi, O. (2007). Green procedure for the synthesis of phthalazino[2,3-6]phthalazine-5,7,12,14-tetraones. Synthetic Communications, 37, 3165–3171. DOI: 10.1080/00397910701545247.

    Article  CAS  Google Scholar 

  • Habibi, D., & Shamsian, A. (2013). An efficient one-pot synthesis ofdihydropyrano[c] chromenes and amino-2-chromenes under solvent-free conditions. Journal of Chemical Research, 37, 253–255. DOI: 10.3184/174751913x13639572643562.

    Article  CAS  Google Scholar 

  • Habibi, D., Zolfigol, M. A., & Safaee, M. (2013). Synthesis of 1,4-dihydropyridines bearing a carbamate moiety on the 4-position. Journal of Chemistry, 2013, 495982. DOI: 10.1155/2013/495982.

    Google Scholar 

  • Hafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A., & El-Taweel, F. M. A. A. (1987). Nitriles in heterocyclic synthesis: Novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 26, 903–907. DOI: 10.3987/r-1987-04-0903.

    Article  CAS  Google Scholar 

  • Han, F., Yang, L., Li, Z., & Xia, C. (2012). Sulfonic acid-functionalized ionic liquids as metal-free, efficient and reusable catalysts for direct amination of alcohols. Advanced Synthesis & Catalysis, 354, 1052–1060. DOI: 10.1002/adsc.201100886.

    Article  CAS  Google Scholar 

  • Hasaninejad, A., Shekouhy, M., Golzar, N., Zare, A., & Doroodmand, M. M. (2011). Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Applied Catalysis A: General, 402, 11–22. DOI: 10.1016/j.apcata.2011.04.012.

    Article  CAS  Google Scholar 

  • Heravi, M. M., Jani, B. A., Derikvand, F., Bamoharram, F. F., & Oskooie, H. A. (2008). Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62 · 18H2O as a green and recyclable catalyst. Catalysis Communications, 10, 272–275. DOI: 10.1016/j.catcom.2008.08.023.

    Article  CAS  Google Scholar 

  • Jiménez-González, C., & Constable, D. J. C. (2011). Green chemistry and engineering: A practical design approach. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Kamal, A., & Chouhan, G. (2004) Investigations towards the chemoselective thioacetalization of carbonyl compounds by using ionic liquid [bmim]Br as a recyclable catalytic medium. Advanced Synthesis & Catalysis, 346, 579–582. DOI: 10.1002/adsc.200303171.

    Article  CAS  Google Scholar 

  • Khurana, J. M., & Kumar, S. (2009). Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Letters, 50, 4125–4127. DOI: 10.1016/j.tetlet.2009.04.125.

    Article  CAS  Google Scholar 

  • Kiyani, H., & Ghorbani, F. (2014). Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media. Chemical Papers, 68, 1104–1112. DOI: 10.2478/s11696-014-0554-6.

    Article  CAS  Google Scholar 

  • Konkoy, C. S., Fick, D. B., Cai, S. X., Lan, N. C., & Keana, J. F. W. (2000). WO Patent No. 2000075123 (A1). Geneva, Switzerland: World Intellectual Property Organization.

  • Liu, H. F., Zeng, F. X., Deng, L., Liao, B., Pang, H., & Guo, Q. X. (2013). Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chemistry, 15, 81–84. DOI: 10.1039/c2gc36630d.

    Article  Google Scholar 

  • Luo, H., Xue, K., Fan, W., Li, C., Nan, G., & Li, Z. (2014). Hydrolysis of vegetable oils to fatty acids using Brønsted acidic ionic liquids as catalysts. Industrial & Engineering Chemistry Research, 53, 11653–11658. DOI: 10.1021/ie501524z.

    Article  CAS  Google Scholar 

  • Maggi, R., Ballini, R., Sartori, G., & Sartorio, R. (2004). Basic alumina catalysed synthesis of substituted 2-amino-2-chromenes via three-component reaction. Tetrahedron Letters, 45, 2297–2299. DOI: 10.1016/j.tetlet.2004.01.115.

    Article  CAS  Google Scholar 

  • Mehrabi, H., & Abusaidi, H. (2010). Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. Journal of the Iranian Chemical Society, 7, 890–894. DOI: 10.1007/bf03246084.

    Article  CAS  Google Scholar 

  • Mehrabi, H., & Kazemi-Mireki, M. (2011). CuO nanoparticles: An efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes. Chinese Chemical Letters, 22, 1419–1422. DOI: 10.1016/j.cclet.2011.06.003.

    Article  CAS  Google Scholar 

  • Niknam, K., Borazjani, N., Rashidian, R., & Jamali, A. (2013). Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chinese Journal of Catalysis, 34, 2245–2254. DOI: 10.1016/s1872-2067(12)60693-7.

    Article  CAS  Google Scholar 

  • Ranu, B. C., Banerjee, S., & Roy, S. (2008). A task specific basic ionic liquid, [bmIm]OH-promoted efficient, green and one-pot synthesis of tetrahydrobenzo[b]pyran derivatives. Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry, 47, 1108–1112.

    Google Scholar 

  • Salvi, P. P., Mandhare, A. M., Sartape, A. S., Pawar, D. K., Han, S. H., & Kolekar, S. S. (2011). An efficient protocol for synthesis of tetrahydrobenzo[b]pyrans using amino functionalized ionic liquid. Comptes Rendus Chimie, 14, 878–882. DOI: 10.1016/j.crci.2011.02.007.

    Article  CAS  Google Scholar 

  • Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399–2407. DOI: 10.1039/b107270f.

    Article  Google Scholar 

  • Singh, K., Singh, J., & Singh, H. (1996). A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles. Tetrahedron, 52, 14273–14280. DOI: 10.1016/0040-4020(96)00879-4.

    Article  CAS  Google Scholar 

  • Sugimura, R., Qiao, K., Tomida, D., & Yokoyama, C. (2007). Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catalysis Communications, 8, 770–772. DOI: 10.1016/j.catcom.2006.08.049.

    Article  CAS  Google Scholar 

  • Wang, X. S., Shi, D. Q., Tu, S. J., & Yao, C. S. (2003). A convenient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-benzo[b]-pyran derivatives catalyzed by KF-alumina. Synthetic Communications, 33, 119–126. DOI: 10.1081/scc-120015567.

    Article  CAS  Google Scholar 

  • Wang, W., Shao, L., Cheng, W., Yang, J., & He, M. (2008). Brønsted acidic ionic liquids as novel catalysts for Prins reaction. Catalysis Communications, 9, 337–341. DOI: 10.1016/j.catcom.2007.07.006.

    Article  CAS  Google Scholar 

  • Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI: 10.1021/cr980032t.

    Article  CAS  Google Scholar 

  • Wu, H. H., Yang, F., Cui, P., Tang, J., & He, M. Y. (2004). An efficient procedure for protection of carbonyls in Brønsted acidic ionic liquid [Hmim]BF4. Tetrahedron Letters, 45, 4963–4965. DOI: 10.1016/j.tetlet.2004.04.138.

    Article  CAS  Google Scholar 

  • Yokoi, T., Kubota, Y., & Tatsumi, T. (2012). Amino-functionalized mesoporous silica as base catalyst and adsorbent. Applied Catalysis A: General, 421, 14–37. DOI: 10.1016/j.apcata.2012.02.004.

    Article  Google Scholar 

  • Zheng, J., & Li, Y. (2011). Basic ionic liquid-catalyzed multicomponent synthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes. Mendeleev Communications, 21, 280–281. DOI: 10.1016/j.mencom.2011.09.017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, D., Shamsian, A. & Nematollahi, D. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites. Chem. Pap. 69, 586–595 (2015). https://doi.org/10.1515/chempap-2015-0066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0066

Keywords

Navigation