Abstract
Separation of microorganism cells from broth is a very important stage in the recovery of fermentation products. The microfiltration of fermented glycerol solutions was studied. During this process, the filter cake building up on the membrane surface caused an increase of filtration resistances, resulting in the decrease of the permeate flux. In this work, short time reverse flow of permeate was used to remove the fouling layer after each cycle of the filtration. The applied periodical membrane cleaning led to minimization of the observed fouling effects.
This is a preview of subscription content, access via your institution.
References
Akhondi, E., Wicaksana, F., Krantz, W. B., & Fane, A. G. (2014). Influence of dissolved air on the effectiveness of cyclic backwashing in submerged membrane systems. Journal of Membrane Science, 456, 77–84. DOI: 10.1016/j.memsci.2013.12.053.
Bacchin, P., Aimar, P., & Field, R. W. (2006). Critical and sustainable fluxes: Theory, experiments and applications. Journal of Membrane Science, 281, 42–69. DOI: 10.1016/j.memsci.2006.04.014.
Bastrzyk, J., Gryta, M., & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chemical Papers, 68, 757–765. DOI: 10.2478/s11696-013-0520-8.
Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nyström, M., & Mänttäri, M. (2004). Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science, 239, 55–64. DOI: 10.1016/j.memsci.2003.09.029.
Bird, M. R., & Bartlett, M. (2002). Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. Journal of Food Engineering, 53, 143–152. DOI: 10.1016/s0260-8774(01)00151-0.
Blanpain-Avet, P., Migdal, J. F., & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency. Food and Bioproducts Processing, 82, 231–243. DOI: 10.1205/fbio.82.3.231.44182.
Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 38, 453–457. DOI: 10.1007/bf00242936.
Bonnélye, V., Guey, L., & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination, 222, 59–65. DOI: 10.1016/j.desal.2007.01.129.
Drożdżyńska, A., Leja, K., & Czaczyk, K. (2011). Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia: Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 92–100.
Gong, Y., Tang, Y., Wang, X. L., Yu, L. X., & Liu, D. H. (2004). The possibility of the desalination of actual 1,3 propanediol fermentation broth by electrodialysis. Desalination, 161, 169–178. DOI: 10.1016/s0011-9164(04)90052-5.
Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of Membrane Science, 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032.
Hao, J., Xu, F., Liu, H., & Liu, D. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81, 102–108. DOI: 10.1002/jctb.1369.
Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836–4847. DOI: 10.1021/la027083c.
Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147, 251–255. DOI: 10.1016/s0011-9164(02)00545-3.
Kang, I. J., Yoon, S. H., & Lee, C. H. (2002). Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Research, 36, 1803–1813. DOI: 10.1016/s0043-1354(01)00388-8.
Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164–1171. DOI: 10.2478/s11696-013-0314-z.
Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., & Starov, V. (2004). Sieve mechanism of microfiltration separation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.
Lee, D. J., Chen, G. Y., Chang, Y. R., & Lee, K. R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers, 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002.
Makardij, A., Chen, X. D., & Farid, M. M. (1999). Microfiltration and ultrafiltration of milk: Some aspects of fouling and cleaning. Food and Bioproducts Processing, 77, 107–113. DOI: 10.1205/096030899532394.
Metsoviti, M., Zeng, A. P., Koutinas, A. A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bio-processes. Journal of Biotechnology, 163, 408–418. DOI: 10.1016/j.jbiotec.2012.11.018.
Mohammad, A. W., Basha, R. K., & Leo, C. P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. Journal of Food Engineering, 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.
Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: Recent development and emerging opportunities. Biotechnology Advances, 27, 895–913. DOI: 10.1016/j.biotechadv.2009.07.003.
Pollice, A., Brookes, A., Jefferson, B., & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors — a review of recent literature. Desalination, 174, 221–230. DOI: 10.1016/j.desal.2004.09.012.
Schäfer, A. I., Fane, A. G., & Waite, T. D. (Eds.) (2005). Nanofiltration: Principles and applications. Kidlington, UK: Elsevier.
Tomczak, W., & Gryta, M. (2013). The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Polish Journal of Chemical Technology, 15, 115–120. DOI: 10.2478/pjct-2013-0057.
Ulbricht, M., Ansorge, W., Danielzik, I., König, M., & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Separation and Purification Technology, 68, 335–342. DOI: 10.1016/j.seppur.2009.06.004.
Vellenga, E., & Trägärdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211–220. DOI: 10.1016/s0011-9164(98)00219-7.
Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S., & Lee, C. H. (2000). Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169, 269–276. DOI: 10.1016/s0376-7388(99)00345-2.
Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95–102. DOI: 10.1016/j.seppur.2009.03.030.
Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gryta, M., Tomczak, W. Microfiltration of post-fermentation broth with backflushing membrane cleaning. Chem. Pap. 69, 544–552 (2015). https://doi.org/10.1515/chempap-2015-0060
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1515/chempap-2015-0060
Keywords
- microfiltration
- bioreactor
- glycerol
- fermentation
- 1,3-propanediol