Skip to main content
Log in

Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Early diagnosis of diseases with minimal cost and time-consumption has become achievable due to recent advances in the development of biosensors. These devices use biorecognition elements for the selective interaction with an analyte and the signal read-out is obtained via different types of transducers. The operational characteristics of biosensors have been reported as improving substantially when a diverse range of nanomaterials is employed. This review presents the construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, a nanomaterial currently the subject of intensive studies. Here, the most attractive directions for graphene applications in biosensor preparation are discussed, including novel detection and amplification schemes exploiting graphene’s unique electrochemical, physical and chemical properties. There is probably a very bright future for graphene-based biosensors, but much further work is required to fulfill the high expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhavan, O., Ghaderi, E., & Rahighi, R. (2012) Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano, 6, 2904–2916. DOI: 10.1021/nn300261t.

    Article  CAS  Google Scholar 

  • Akhavan, O., Bijanzad, K., & Mirsepah, A. (2014) Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Advances, 4, 20441–20448. DOI: 10.1039/c4ra01550a.

    Article  CAS  Google Scholar 

  • Ambrosi, A., Bonanni, A., Sofer, Z., Cross, J. S., & Pumera, M. (2011) Electrochemistry at chemically modified graphenes. Chemistry — A European Journal, 17, 10763–10770. DOI: 10.1002/chem.201101117.

    Article  CAS  Google Scholar 

  • Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2014) Electrochemistry of graphene and related materials. Chemical Reviews, 114, 7150–7188. DOI: 10.1021/cr500023c.

    Article  CAS  Google Scholar 

  • Bai, L., Yuan, R., Chai, Y., Zhuo, Y., Yuan, Y., & Wang, Y. (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials, 33, 1090–1096. DOI: 10.1016/j.biomaterials.2011.10.012.

    Article  CAS  Google Scholar 

  • Bai, L., Chai, Y., Pu, X., & Yuan, R. (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale, 6, 2902–2908. DOI: 10.1039/c3nr05930h.

    Article  CAS  Google Scholar 

  • Bertok, T., Klukova, L., Sediva, A., Kasák, P., Semak, V., Micusik, M., Omastova, M., Chovanová, L., Vlček, M., Imrich, R., Vikartovska, A., & Tkac, J. (2013a) Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Analytical Chemistry, 85, 7324–7332. DOI: 10.1021/ac401281t.

    Article  CAS  Google Scholar 

  • Bertók, T., Katrlík, J., Gemeiner, P., & Tkac, J. (2013b) Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchimica Acta, 180, 1–13. DOI: 10.1007/s00604-012-0876-4.

    Article  CAS  Google Scholar 

  • Bo, Y., Yang, H., Hu, Y., Yao, T., & Huang, S. (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta, 56, 2676–2681. DOI: 10.1016/j.electacta.2010.12.034.

    Article  CAS  Google Scholar 

  • Bonanni, A., & Pumera, M. (2011) Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano, 5, 2356–2361. DOI: 10.1021/nn200091p.

    Article  CAS  Google Scholar 

  • Bonanni, A., Loo, A. H., & Pumera, M. (2012a) Graphene for impedimetric biosensing. TrAC Trends in Analytical Chemistry, 37, 12–21. DOI: 10.1016/j.trac.2012.02.011.

    Article  CAS  Google Scholar 

  • Bonanni, A., Chua, C. K., Zhao, G., Sofer, Z., & Pumera, M. (2012b) Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano, 6, 8546–8551. DOI: 10.1021/nn301359y.

    Article  CAS  Google Scholar 

  • Bonanni, A., Ambrosi, A., & Pumera, M. (2012c) Nucleic acid functionalized graphene for biosensing. Chemistry — A European Journal, 18, 1668–1673. DOI: 10.1002/chem.201102850.

    Article  CAS  Google Scholar 

  • Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3.

    Article  CAS  Google Scholar 

  • Cai, Y., Li, H., Du, B., Yang, M., Li, Y., Wu, D., Zhao, Y., Dai, Y., & Wei, Q. (2011) Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM·BF4-coated SBA-15 as labels and functionalized graphene as enhancer. Biomaterials, 32, 2117–2123. DOI: 10.1016/j.biomaterials.2010.11.058.

    Article  CAS  Google Scholar 

  • Chen, D., Tang, L., & Li, J. (2010) Graphene-based materials in electrochemistry. Chemical Society Reviews, 39, 3157–3180. DOI: 10.1039/b923596e.

    Article  CAS  Google Scholar 

  • Chen, H., Zhang, B., Cui, Y., Liu, B., Chen, G., & Tang, D. (2011a) One-step electrochemical immunoassay of biomarker based on nanogold-functionalized graphene sensing platform. Analytical Methods, 3, 1615–1621. DOI: 10.1039/c1ay05172e.

    Article  CAS  Google Scholar 

  • Chen, Y., Jiang, B., Xiang, Y., Chai, Y., & Yuan, R. (2011b) Target recycling amplification for sensitive and label-free impedimetric genosensing based on hairpin DNA and graphene/Au nanocomposites. Chemical Communications, 47, 12798–12800. DOI: 10.1039/c1cc14902d.

    Article  CAS  Google Scholar 

  • Chen, J. R., Jiao, X. X., Luo, H. Q., & Li, N. B. (2013a) Probelabel-free electrochemical aptasensor based on methylene blue-anchored graphene oxide amplification. Journal of Materials Chemistry B, 1, 861–864. DOI: 10.1039/c2tb00267a.

    Article  CAS  Google Scholar 

  • Chen, X., Jia, X., Han, J., Ma, J., & Ma, Z. (2013b) Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics, 50, 356–361. DOI: 10.1016/j.bios.2013.06.054.

    Article  CAS  Google Scholar 

  • Clark, L. C., Jr., & Lyons, C. (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45. DOI: 10.1111/j.1749-6632.1962.tb13623.x.

    Article  CAS  Google Scholar 

  • Deng, K., Xiang, Y., Zhang, L., Chen, Q., & Fu, W. (2013) An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry. Analytica Chimica Acta, 759, 61–65. DOI: 10.1016/j.aca.2012.11.018.

    Article  CAS  Google Scholar 

  • Devi, R., Relhan, S., & Pundir, C. S. (2013) Construction of a chitosan/polyaniline/graphene oxide nanoparticles/polypyrrole/Au electrode for amperometric determination of urinary/plasma oxalate. Sensors and Actuators B: Chemical, 186, 17–26. DOI: 10.1016/j.snb.2013.05.078.

    Article  CAS  Google Scholar 

  • Du, M., Yang, T., Zhao, C., & Jiao, K. (2012) Electrochemical logic aptasensor based on graphene. Sensors and Actuators B: Chemical, 169, 255–260. DOI: 10.1016/j.snb.2012.04.078.

    Article  CAS  Google Scholar 

  • Dubuisson, E., Yang, Z., & Loh, K. P. (2011) Optimizing label-free DNA electrical detection on graphene platform. Analytical Chemistry, 83, 2452–2460. DOI: 10.1021/ac102431d.

    Article  CAS  Google Scholar 

  • Eissa, S., Tlili, C., L’Hocine, L., & Zourob, M. (2012) Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosensors & Bioelectronics, 38, 308–313. DOI: 10.1016/j.bios.2012.06.008.

    Article  CAS  Google Scholar 

  • Eissa, S., L’Hocine, L., Siaj, M., & Zourob, M. (2013) A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin. Analyst, 138, 4378–4384. DOI: 10.1039/c3an36883a.

    Article  CAS  Google Scholar 

  • Erdem, A., Eksin, E., & Muti, M. (2014) Chitosan-graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids and Surfaces B: Biointerfaces, 115, 205–211. DOI: 10.1016/j.colsurfb.2013.11.037.

    Article  CAS  Google Scholar 

  • Feng, L., Chen, Y., Ren, J., & Qu, X. (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials, 32, 2930–2937. DOI: 10.1016/j.biomaterials.2011.01.002.

    Article  CAS  Google Scholar 

  • Filip, J., Šefčovičová, J., Gemeiner, P., & Tkac, J. (2013) Electrochemical features of bilirubin oxidase immobilized on different carbon nanostructures. Key Engineering Materials, 543, 13–17. DOI: 10.4028/www.scientific.net/kem.543.13.

    Article  CAS  Google Scholar 

  • Filip, J., & Tkac, J. (2014) Is graphene worth using in biofuel cells? Electrochimica Acta, 136, 340–354. DOI: 10.1016/j.electacta.2014.05.119.

    Article  CAS  Google Scholar 

  • Fitzer, E., Kochling, K. H., Boehm, H. P., & Marsh, H. (1995) Recommended terminology for the description of carbon as a solid — (IUPAC Recommendations 1995). Pure and Applied Chemistry, 67, 473–506. DOI: 10.1351/pac199567030473.

    Article  Google Scholar 

  • Guo, K., Qian, K., Zhang, S., Kong, J., Yu, C., & Liu, B. (2011) Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta, 85, 1174–1179. DOI: 10.1016/j.talanta.2011.05.038.

    Article  CAS  Google Scholar 

  • Guo, Y., Han, Y., Guo, Y., & Dong, C. (2013) Graphene-Orange II composite nanosheets with electroactive functions as label-free aptasensing platform for “signal-on” detection of protein. Biosensors & Bioelectronics, 45, 95–101. DOI: 10.1016/j.bios.2013.01.054.

    Article  CAS  Google Scholar 

  • Han, J. M., Ma, J., & Ma, Z. (2013) One-step synthesis of graphene oxide-thionine-Au nanocomposites and its application for electrochemical immunosensing. Biosensors & Bioelectronics, 47, 243–247. DOI: 10.1016/j.bios.2013.03.032.

    Article  CAS  Google Scholar 

  • Hernandez, F. J., & Ozalp, V. C. (2012) Graphene and other nanomaterial-based electrochemical aptasensors. Biosensors, 2, 1–14. DOI: 10.3390/bios2010001.

    Article  CAS  Google Scholar 

  • Hernández, R., Vallés, C., Benito, A. M., Maser, W. K., Rius, F. X., & Riu, J. (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosensors & Bioelectronics, 54, 553–557. DOI: 10.1016/j.bios.2013.11.053.

    Article  CAS  Google Scholar 

  • Hou, L., Cui, Y., Xu, M., Gao, Z., Huang, J., & Tang, D. (2013) Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosensors & Bioelectronics, 47, 149–156. DOI: 10.1016/j.bios.2013.02.035.

    Article  CAS  Google Scholar 

  • Hu, Y., Wang, K., Zhang, Q., Li, F., Wu, T., & Niu, L. (2012) Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials, 33, 1097–1106. DOI: 10.1016/j.biomaterials.2011.10.045.

    Article  CAS  Google Scholar 

  • Huang, K. J., Niu, D. J., Sun, J. Y., & Zhu, J. J. (2011) An electrochemical amperometric immunobiosensor for label-free detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. Journal of Electroanalytical Chemistry, 656, 72–77. DOI: 10.1016/j.jelechem.2011.01.007.

    Article  CAS  Google Scholar 

  • Huang, K. J., Li, J., Liu, Y. M., Cao, X., Yu, S., & Yu, M. (2012) Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchimica Acta, 177, 419–426. DOI: 10.1007/s00604-012-0805-6.

    Article  CAS  Google Scholar 

  • Hushegyi, A., & Tkac, J. (2014) Are glycan biosensors an alternative to glycan microarrays? Analytical Methods, 6, 6610–6620. DOI: 10.1039/c4ay00692e.

    Article  CAS  Google Scholar 

  • Jia, X., Liu, Z., Liu, N., & Ma, Z. (2014) A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosensors & Bioelectronics, 53, 160–166. DOI: 10.1016/j.bios.2013.09.050.

    Article  CAS  Google Scholar 

  • Jiang, X., Chen, K., Wang, J., Shao, K., Fu, T., Shao, F., Lu, D., Liang, J., Foda, M. F., & Han, H. (2013) Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels. Analyst, 138, 3388–3393. DOI: 10.1039/c3an00056g.

    Article  CAS  Google Scholar 

  • Kluková, L., Bertok, T., Kasák, P., & Tkac, J. (2014) Nanoscale-controlled architecture for the development of ultrasensitive lectin biosensors applicable in glycomics. Analytical Methods, 6, 4922–4931. DOI: 10.1039/c4ay00495g.

    Article  CAS  Google Scholar 

  • Kochmann, S., Hirsch, T., & Wolfbeis, O. S. (2012) Graphenes in chemical sensors and biosensors. TrAC Trends in Analytical Chemistry, 39, 87–113. DOI: 10.1016/j.trac.2012.06.004.

    Article  CAS  Google Scholar 

  • Kong, F. Y., Xu, M. T., Xu, J. J., & Chen, H. Y. (2011) A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode. Talanta, 85, 2620–2625. DOI: 10.1016/j.talanta.2011.08.028.

    Article  CAS  Google Scholar 

  • Kong, F.Y., Xu, B.Y., Du, Y., Xu, J.J., & Chen, H.Y. (2013) A branched electrode based electrochemical platform: towards new label-free and reagentless simultaneous detection of two biomarkers. Chemical Communications, 49, 1052–1054. DOI: 10.1039/c2cc37675j.

    Article  CAS  Google Scholar 

  • Kong, F.Y., Gu, S.X., Li, W.W., Chen, T.T., Xu, Q., & Wang, W. (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors & Bioelectronics, 56, 77–82. DOI: 10.1016/j.bios.2013.12.067.

    Article  CAS  Google Scholar 

  • Li, R., Wu, D., Li, H., Xu, C., Wang, H., Zhao, Y., Cai, Y., Wei, Q., & Du, B. (2011) Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Analytical Biochemistry, 414, 196–201. DOI: 10.1016/j.ab.2011.03.019.

    Article  CAS  Google Scholar 

  • Li, H., He, J., Li, S., & Turner, A. P. F. (2013) Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosensors & Bioelectronics, 43, 25–29. DOI: 10.1016/j.bios.2012.11.037.

    Article  CAS  Google Scholar 

  • Lim, C. X., Hoh, H. Y., Ang, P. K., & Loh, K. P. (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects. Analytical Chemistry, 82, 7387–7393. DOI: 10.1021/ac101519v.

    Article  CAS  Google Scholar 

  • Liu, K., Zhang, J. J., Wang, C., & Zhu, J. J. (2011) Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosensors & Bioelectronics, 26, 3627–3632. DOI: 10.1016/j.bios.2011.02.018.

    Article  CAS  Google Scholar 

  • Liu, Y., Dong, X., & Chen, P. (2012) Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 41, 2283–2307. DOI: 10.1039/c1cs15270j.

    Article  CAS  Google Scholar 

  • Liu, A.L., Zhong, G.X., Chen, J.Y., Weng, S.H., Huang, H.N., Chen, W., Lin, L.Q., Lei, Y., Fu, F.H., Sun, Z.L., Lin, X. H., Lin, J. H., & Yang, S. Y. (2013) A sandwich-type DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films. Analytica Chimica Acta, 767, 50–58. DOI: 10.1016/j.aca.2012.12.049.

    Article  CAS  Google Scholar 

  • Loo, A. H., Bonanni, A., & Pumera, M. (2012a) Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale, 4, 143–147. DOI: 10.1039/c1nr10966a.

    Article  CAS  Google Scholar 

  • Loo, A. H., Bonanni, A., Ambrosi, A., Poh, H. L., & Pumera, M. (2012b) Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale, 4, 921–925. DOI: 10.1039/c2nr11492e.

    Article  CAS  Google Scholar 

  • Luo, X., & Davis, J. J. (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews, 42, 5944–5962. DOI: 10.1039/c3cs60077g.

    Article  CAS  Google Scholar 

  • Ma, X., Jiang, Y., Jia, F., Yu, Y., Chen, J., & Wang, Z. (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods, 98, 94–98. DOI: 10.1016/j.mimet.2014.01.003.

    Article  CAS  Google Scholar 

  • Mao, K., Wu, D., Li, Y., Ma, H., Ni, Z., Yu, H., Luo, C., Wei, Q., & Du, B. (2012) Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Analytical Biochemistry, 422, 22–27. DOI: 10.1016/j.ab.2011.12.047.

    Article  CAS  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004) Electric field effect in atomically thin carbon films. Science, 306, 666–669. DOI: 10.1126/science.1102896.

    Article  CAS  Google Scholar 

  • Paleček, E., & Bartošík, M. (2012) Electrochemistry of nucleic acids. Chemical Reviews, 112, 3427–3481. DOI: 10.1021/cr200303p.

    Article  CAS  Google Scholar 

  • Paleček, E., Tkac, J., Bartošík, M., Bertok, T., Ostatná, V., & Paleček, J. (2014) Electrochemistry of non-conjugated proteins and glycoproteins. Towards sensors for biomedicine and glycomics. Chemical Reviews, submitted.

  • Parlak, O., Tiwari, A., Turner, A. P. F., & Tiwari, A. (2013) Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. Biosensors & Bioelectronics, 49, 53–62. DOI: 10.1016/j.bios.2013.04.004.

    Article  CAS  Google Scholar 

  • Pei, X., Zhang, B., Tang, J., Liu, B., Lai, W., & Tang, D. (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Analytica Chimica Acta, 758, 1–18. DOI: 10.1016/j.aca.2012.10.060.

    Article  CAS  Google Scholar 

  • Peng, K., Zhao, H., Wu, X., Yuan, Y., & Yuan, R. (2012) Ultrasensitive aptasensor based on graphene-3,4,9,10-perylene-tetracarboxylic dianhydride as platform and functionalized hollow PtCo nanochains as enhancers. Sensors and Actuators B: Chemical, 169, 88–95. DOI: 10.1016/j.snb.2012.03.044.

    Article  CAS  Google Scholar 

  • Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L. K., & Poh, H. L. (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29, 954–965. DOI: 10.1016/j.trac.2010.05.011.

    Article  CAS  Google Scholar 

  • Pumera, M. (2011) Graphene in biosensing. Materials Today, 14, 308–315. DOI: 10.1016/s1369-7021(11)70160-2.

    Article  CAS  Google Scholar 

  • Pumera, M. (2013) Electrochemistry ofgraphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 36, 14–18. DOI: 10.1016/j.elecom.2013.08.028.

    Article  CAS  Google Scholar 

  • Qu, F., Lu, H., Yang, M., & Deng, C. (2011) Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement. Biosensors & Bioelectronics, 26, 4810–4814. DOI: 10.1016/j.bios.2011.06.018.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., & Tkac, J. (2015) Application of nanomaterials in microbial-cell biosensor constructions. Chemical Papers, 69, 42–53. DOI: 10.2478/s11696-014-0602-2.

    Google Scholar 

  • Shiddiky, M. J. A., Rauf, S., Kithva, P. H., & Trau, M. (2012) Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosensors & Bioelectronics, 35, 251–257. DOI: 10.1016/j.bios.2012.02.057.

    Article  CAS  Google Scholar 

  • Shleev, S., Tkac, J., Christenson, A., Ruzgas, T., Yaropolov, A. I., Whittaker, J. W., & Gorton, L. (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosensors & Bioelectronics, 20, 2517–2554. DOI: 10.1016/j.bios.2004.10.003.

    Article  CAS  Google Scholar 

  • Srivastava, S., Kumar, V., Ali, M. A., Solanki, P. R., Srivastava, A., Sumana, G., Saxena, P. S., Joshi, A. G., & Malhotra, B. D. (2013) Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 5, 3043–3051. DOI: 10.1039/c3nr32242d.

    Article  CAS  Google Scholar 

  • Sun, W., Qi, X., Chen, Y., Liu, S., & Gao, H. (2011a) Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta, 87, 106–112. DOI: 10.1016/j.talanta.2011.09.047.

    Article  CAS  Google Scholar 

  • Sun, T., Wang, L., Li, N., & Gan, X. (2011b) Label-free electrochemical aptasensor for thrombin detection based on the nafion@graphene as platform. Bioprocess and Biosystems Engineering, 34, 1081–1085. DOI: 10.1007/s00449-011-0558-3.

    Article  CAS  Google Scholar 

  • Świetlikowska, A., Gniadek, M., & Paiys, B. (2013) Electrode-posited graphene nano-stacks for biosensor applications. Surface groups as redox mediators for laccase. Electrochimica Acta, 98, 75–81. DOI: 10.1016/j.electacta.2013.03.055.

    Article  CAS  Google Scholar 

  • Tang, J., Tang, D., Su, B., Li, Q., Qiu, B., & Chen, G. (2011) Silver nanowire-graphene hybrid nanocomposites as label for sensitive electrochemical immunoassay of alpha-fetoprotein. Electrochimica Acta, 56, 8168–8175. DOI: 10.1016/j.electacta.2011.05.128.

    Article  CAS  Google Scholar 

  • Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009) Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectro-catalysis. Bioelectrochemistry, 76, 53–62. DOI: 10.1016/j.bioelechem.2009.02.013.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011a) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205–212. DOI: 10.1016/j.tibtech.2011.01.008.

    Article  CAS  Google Scholar 

  • Wang, Q., Zheng, M., Shi, J., Gao, F., & Gao, F. (2011b) Electrochemical oxidation of native double-stranded DNA on a graphene-modified glassy carbon electrode. Electroanalysis, 23, 915–920. DOI: 10.1002/elan.201000713.

    Article  CAS  Google Scholar 

  • Wang, Y., Yuan, R., Chai, Y., Yuan, Y., Bai, L., & Liao, Y. (2011c) A multi-amplification aptasensor for highly sensitive detection of thrombin based on high-quality hollow CoPt nanoparticles decorated graphene. Biosensors & Bioelectronics, 30, 61–66. DOI: 10.1016/j.bios.2011.08.027.

    CAS  Google Scholar 

  • Wang, Z., Zhang, J., Chen, P., Zhou, X., Yang, Y., Wu, S., Niu, L., Han, Y., Wang, L., Chen, P., Boey, F., Zhang, Q., Liedberg, B., & Zhang, H. (2011d) Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosensors & Bioelectronics, 26, 3881–3886. DOI: 10.1016/j.bios.2011.03.002.

    Article  CAS  Google Scholar 

  • Wang, Y., Xiao, Y., Ma, X., Lia, N., & Yang, X. (2012a) Label-free and sensitive thrombin sensing on a molecularly grafted aptamer on graphene. Chemical Communications, 48, 738–740. DOI: 10.1039/c1cc15429j.

    Article  CAS  Google Scholar 

  • Wang, Y., Yuan, R., Chai, Y., Yuan, Y., & Bai, L. (2012b) In situ enzymatic silver enhancement based on functionalized graphene oxide and layer-by-layer assembled gold nanoparticles for ultrasensitive detection of thrombin. Biosensors & Bioelectronics, 38, 50–54. DOI: 10.1016/j.bios.2012.04.046.

    Article  CAS  Google Scholar 

  • Wang, Y., Chang, H., Wu, H., & Liu, H. (2013a) Bioinspired prospects of graphene: from biosensing to energy. Journal of Materials Chemistry B, 1, 3521–3534. DOI: 10.1039/c3tb20524j.

    Article  CAS  Google Scholar 

  • Wang, G., Gang, X., Zhou, X., Zhang, G., Huang, H., Zhang, X., & Wang, L. (2013b) Electrochemical immunosensor with graphene/gold nanoparticles platform and ferrocene derivatives label. Talanta, 103, 75–80. DOI: 10.1016/j.talanta.2012.10.008.

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, Y., Li, H., Du, B., Ma, H., Wu, D., & Wei, Q. (2013c) A silver-palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosensors & Bioelectronics, 49, 14–19. DOI: 10.1016/j.bios.2013.04.041.

    Article  CAS  Google Scholar 

  • Wang, Q., Lei, J., Deng, S., Zhang, L., & Ju, H. (2013d) Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chemical Communications, 49, 916–918. DOI: 10.1039/c2cc37664d.

    Article  CAS  Google Scholar 

  • Wang, Y., Ping, J., Ye, Z., Wu, J., & Ying, Y. (2013e) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosensors & Bioelectronics, 49, 492–498. DOI: 10.1016/j.bios.2013.05.061.

    Article  CAS  Google Scholar 

  • Wang, J., Shi, A., Fang, X., Han, X., & Zhang, Y. (2014a) Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchimica Acta, 181, 935–940. DOI: 10.1007/s00604-014-1182-0.

    Article  CAS  Google Scholar 

  • Wang, Z., Liu, N., & Ma, Z. (2014b) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosensors & Bioelectronics, 53, 324–329. DOI: 10.1016/j.bios.2013.10.009.

    Article  CAS  Google Scholar 

  • Wei, Q., Mao, K., Wu, D., Dai, Y., Yang, J., Du, B., Yang, M., & Li, H. (2010) A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sensors and Actuators B: Chemical, 149, 314–318. DOI: 10.1016/j.snb.2010.06.008.

    Article  CAS  Google Scholar 

  • Wu, J., Zou, Y., Li, X., Liu, H., Shen, G., & Yu, R. (2005) A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite. Sensors and Actuators B: Chemical, 104, 43–49. DOI: 10.1016/j.snb.2004.04.097.

    Article  CAS  Google Scholar 

  • Wu, X., Hu, Y., Jin, J., Zhou, N., Wu, P., Zhang, H., & Cai, C. (2010) Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Analytical Chemistry, 82, 3588–3596. DOI: 10.1021/ac100621r.

    Article  CAS  Google Scholar 

  • Wu, Y., Xue, P., Kang, Y., & Hui, K. M. (2013) Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Analytical Chemistry, 85, 3166–3173. DOI: 10.1021/ac303398b.

    Article  CAS  Google Scholar 

  • Wu, C., Cheng, Q., Wu, K., Wu, G., & Li, Q. (2014a) Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Analytica Chimica Acta, 825, 26–33. DOI: 10.1016/j.aca.2014.03.036.

    Article  CAS  Google Scholar 

  • Wu, Y., Xue, P., Hui, K. M., & Kang, Y. (2014b) A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosensors & Bioelectronics, 52, 180–187. DOI: 10.1016/j.bios.2013.08.039.

    Article  CAS  Google Scholar 

  • Xia, Y., Gao, P., Bo, Y., Wang, W., & Huang, S. (2012) Immunoassay for SKOV-3 human ovarian carcinoma cells using a graphene oxide-modified electrode. Microchimica Acta, 179, 201–207. DOI: 10.1007/s00604-012-0880-8.

    Article  CAS  Google Scholar 

  • Xie, X., Yu, G., Liu, N., Bao, Z., Criddle, C.S., & Cui, Y. (2012) Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science, 5, 6862–6866. DOI: 10.1039/c2ee03583a.

    Article  CAS  Google Scholar 

  • Yang, W., Ratinac, K. R., Ringer, S. P., Thordarson, P., Gooding, J. J., & Braet, F. (2010) Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angewandte Chemie International Edition, 49, 2114–2138. DOI: 10.1002/anie.200903463.

    Article  CAS  Google Scholar 

  • Yang, M., Javadi, A., & Gong, S. (2011) Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 155, 357–360. DOI: 10.1016/j.snb.2010.11.055.

    Article  CAS  Google Scholar 

  • Yang, T., Guan, Q., Guo, X., Meng, L., Du, M., & Jiao, K. (2013a) Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. Analytical Chemistry, 85, 1358–1366. DOI: 10.1021/ac3030009.

    Article  CAS  Google Scholar 

  • Yang, T., Guo, X., Kong, Q., Yang, R., Li, Q., & Jiao, K. (2013b) Comparative studies on zirconia and graphene composites obtained by one-step and stepwise electrodeposition for deoxyribonucleic acid sensing. Analytica Chimica Acta, 786, 29–33. DOI: 10.1016/j.aca.2013.05.023.

    Article  CAS  Google Scholar 

  • Yang, T., Li, Q., Li, X., Wang, X., Du, M., & Jiao, K. (2013c) Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANI nanocomposites. Biosensors & Bioelectronics, 42, 415–418. DOI: 10.1016/j.bios.2012.11.007.

    Article  CAS  Google Scholar 

  • Yang, T., Li, Q., Meng, L., Wang, X., Chen, W., & Jiao, K. (2013d) Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. ACS Applied Materials & Interfaces, 5, 3495–3499. DOI: 10.1021/am400370s.

    Article  CAS  Google Scholar 

  • Yi, H., Xu, W., Yuan, Y., Bai, L., Wu, Y., Chai, Y., & Yuan, R. (2014) A pseudo triple-enzyme cascade amplified aptasensor for thrombin detection based on hemin/G-quadruplex as signal label. Biosensors & Bioelectronics, 54, 415–420. DOI: 10.1016/j.bios.2013.11.036.

    Article  CAS  Google Scholar 

  • Yin, H., Zhou, Y., Zhang, H., Meng, X., & Ai, S. (2012) Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. Biosensors & Bioelectronics, 33, 247–253. DOI: 10.1016/j.bios.2012.01.014.

    Article  CAS  Google Scholar 

  • Yuan, Y., Gou, X., Yuan, R., Chai, Y., Zhuo, Y., Ye, X., & Gan, X. (2011) Graphene-promoted 3,4,9,10-perylenetetra-carboxylic acid nanocomposite as redox probe in label-free electrochemical aptasensor. Biosensors & Bioelectronics, 30, 123–127. DOI: 10.1016/j.bios.2011.08.041.

    Article  CAS  Google Scholar 

  • Yuan, Y., Yuan, R., Chai, Y., Zhuo, Y., Gan, X., & Bai, L. (2012) 3,4,9,10-Perylenetetracarboxylic acid/hemin nano-composites act as redox probes and electrocatalysts for constructing a pseudobienzyme-channeling amplified electrochemical aptasensor. Chemistry — A European Journal, 18, 14186–14191. DOI: 10.1002/chem.201103960.

    Article  CAS  Google Scholar 

  • Zhang, J., Lei, J., Pan, R., Xue, Y., & Ju, H. (2010) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosensors & Bioelectronics, 26, 371–376. DOI: 10.1016/j.bios.2010.07.127.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Jiang, W. (2012) Decorating graphene sheets with gold nanoparticles for the detection of sequence-specific DNA. Electrochimica Acta, 71, 239–245. DOI: 10.1016/j.electacta.2012.03.136.

    Article  CAS  Google Scholar 

  • Zhang, X., Gao, F., Cai, X., Zheng, M., Gao, F., Jiang, S., & Wang, Q. (2013) Application of graphene-pyrenebutyric acid nanocomposite as probe oligonucleotide immobilization platform in a DNA biosensor. Materials Science & Engineering C: Materials for Biological Applications, 33, 3851–3857. DOI: 10.1016/j.msec.2013.05.022.

    Article  CAS  Google Scholar 

  • Zhang, X., Liao, Q., Chu, M., Liu, S., & Zhang, Y. (2014) Structure effect on graphene-modified enzyme electrode glucose sensors. Biosensors & Bioelectronics, 52, 281–287. DOI: 10.1016/j.bios.2013.07.022.

    Article  CAS  Google Scholar 

  • Zhong, Z., Wu, W., Wang, D., Wang, D., Shan, J., Qing, Y., & Zhang, Z. (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. Biosensors & Bioelectronics, 25, 2379–2383. DOI: 10.1016/j.bios.2010.03.009.

    Article  CAS  Google Scholar 

  • Zhou, M., Zhai, Y., & Dong, S. (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81, 5603–5613. DOI: 10.1021/ac900136z.

    Article  CAS  Google Scholar 

  • Zhou, Y., Yin, H., Meng, X., Xu, Z., Fu, Y., & Ai, S. (2012a) Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide. Electrochimica Acta, 71, 294–301. DOI: 10.1016/j.electacta.2012.04.014.

    Article  CAS  Google Scholar 

  • Zhou L., Li, R., Li, Z., Xia, Q., Fang, Y., & Liu, J. (2012b) An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors and Actuators B: Chemical, 174, 359–365. DOI: 10.1016/j.snb.2012.06.051.

    Article  CAS  Google Scholar 

  • Zhou, Y., Wang, M., Xu, Z., Ni, C., Yin, H., & Ai, S. (2014) Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor. Biosensors & Bioelectronics, 54, 244–250. DOI: 10.1016/j.bios.2013.11.026.

    Article  CAS  Google Scholar 

  • Zhu, Z., Garcia-Gancedo, L., Flewitt, A. J., Xie, H., Moussy, F., & Milne, W. I. (2012) A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors, 12, 5996–6022. DOI: 10.3390/s120505996.

    Article  Google Scholar 

  • Zhu, Q., Chai, Y., Yuan, R., Zhuo, Y., Han, J., Li, Y., & Liao, N. (2013) Amperometric immunosensor for simultaneous detection of three analytes in one interface using dual functionalized graphene sheets integrated with redox-probes as tracer matrixes. Biosensors & Bioelectronics, 43, 440–445. DOI: 10.1016/j.bios.2012.12.030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filip, J., Kasák, P. & Tkac, J. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors. Chem. Pap. 69, 112–133 (2015). https://doi.org/10.1515/chempap-2015-0051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0051

Keywords

Navigation