Skip to main content
Log in

Flavonoids inhibiting glycation of bovine serum albumin: affinity-activity relationship

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Protein glycation leads to the formation of advanced glycation end-products (AGEs), which contribute to the pathogenesis of diabetic complications. The structure-activity relationship of dietary flavonoids for inhibiting the glycation of bovine serum albumin (BSA) in vitro was subjected to a detailed investigation. The structure-activity relationship revealed that: 1) the hydroxylation on ring B of the flavones enhanced the inhibition and the hydroxyl groups at the C-5 and C-7 positions of flavones favoured the inhibition; 2) the optimal number of hydroxyl groups on ring B of the flavonols was one (at the C-3 position) and the methylation of flavonols weakened the inhibition; 3) the methoxylation at the C-6 position and methylation at C-4′ position of genistein clearly enhanced the inhibition; 4) the hydroxyl groups at the C-5 and C-7 positions of flavanones were in favour of the inhibition; 5) the glycosylation of flavonoids significantly weakened the inhibition. Obvious linear affinity-activity relationships exist between the BSA-flavonoid interaction and flavonoids as BSA glycation inhibitors (R2 = 0.76585). The flavonoids with a higher affinity to BSA exhibited a stronger inhibition of the glycation of BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrae-Marobela, K., Ghislain, F. W., Okatch, H., & Majinda, R. R. T. (2013) Polyphenols: A diverse class of multi-target anti-HIV-1 agents. Current Drug Metabolism, 14, 392–413. DOI: 10.2174/13892002113149990095.

    Article  CAS  Google Scholar 

  • Barnaby, O. S., Cerny, R. L., Clarke, W., & Hage, D. S. (2011) Comparison of modification sites formed on human serum albumin at various stages of glycation. Clinica Chimica Acta, 412, 277–285. DOI: 10.1016/j.cca.2010.10.018.

    Article  CAS  Google Scholar 

  • Cao, H., Shi, Y. J., & Chen, X. Q. (2013) Advances on the interaction between tea catechins and plasma proteins: Structure-affinity relationship, influence on antioxidant activity, and molecular docking aspects. Current Drug Metabolism, 14, 446–450. DOI: 10.2174/1389200211314040007.

    Article  Google Scholar 

  • Deng, G. F., Xu, X. R., Zhang, Y., Li, D., Gan, R. Y., & Li, H. B. (2013) Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition, 53, 296–306. DOI: 10.1080/10408398.2010.529624.

    Article  CAS  Google Scholar 

  • Hughes, L.A. E., Arts, I.C. W., Ambergen, T., Brants, H. A. M., Dagnelie, P. C., Goldbohm, R. A., van den Brandt, P. A., & Weijenberg, M. P. (2008) Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study The American Journal of Clinical Nutrition, 88, 1341–1352. DOI: 10.3945/ajcn.2008.26058.

    CAS  Google Scholar 

  • Jang, D. S., Lee, Y. M., Jeong, I. H., & Kim, J. S. (2010) Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Archives of Pharmacal Research, 33, 875–880. DOI: 10.1007/s12272-010-0610-x.

    Article  CAS  Google Scholar 

  • Johnson, M. H., Gonzalez de Mejia, E., Fan, J. F., Lila, M. A., & Yousef, G. G. (2013) Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Molecular Nutrition & Food Research, 57, 1182–1197. DOI: 10.1002/mnfr.201200678.

    Article  CAS  Google Scholar 

  • Jung, S.H., Lee, J.M., Lee, H.J., Kim, C.Y., Lee, E.H., & Um, B. H. (2007) Aldose reductase and advanced glycation endproducts inhibitory effect of Phyllostachys nigra. Biological and Pharmaceutical Bulletin, 30, 1569–1572. DOI: 10.1248/bpb.30.1569.

    Article  CAS  Google Scholar 

  • Liu, Y. J., Zhan, J., Liu, X. L., Wang, Y., Ji, J., & He, Q. Q. (2014) Dietary flavonoids intake and risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Clinical Nutrition, 33, 59–63. DOI: 10.1016/j.clnu.2013.03.011.

    Article  CAS  Google Scholar 

  • Matsuda, H., Wang, T., Managi, H., & Yoshikawa, M. (2003) Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorganic & Medicinal Chemistry, 11, 5317–5323. DOI: 10.1016/j.bmc.2003.09.045.

    Article  CAS  Google Scholar 

  • Rondeau, P., & Bourdon, E. (2011) The glycation of albumin: Structural and functional impacts. Biochimie, 93, 645–658. DOI: 10.1016/j.biochi.2010.12.003.

    Article  CAS  Google Scholar 

  • Thornalley, P. J., Langborg, A., & Minhas, H. S. (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochemical Journal, 344, 109–116.

    Article  CAS  Google Scholar 

  • van Dam, R. M., Naidoo, N., & Landberg, R. (2013) Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Current Opinion on Lipidology, 24, 25–33. DOI: 10.1097/MOL.0b013e32835bcdff.

    Article  Google Scholar 

  • Wang, Y. L., Zhao, Y., Yang, F., Yuan, Y. M., Wang, H., & Xiao, J. B. (2012) Influences of glucose on the dietary hydroxyflavonoids-plasma proteins interaction. Journal of Agricultural & Food Chemistry, 60, 12116–12221. DOI: 10.1021/jf303094e.

    Article  CAS  Google Scholar 

  • Wedick, N. M., Pan, A., Cassidy, A., Rimm, E. B., Sampson, L., Rosner, B., Willett, W., Hu, F. B., Sun, Q., & van Dam, R. M. (2012) Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American Journal of Clinical Nutrition, 95, 925–933. DOI: 10.3945/ajcn.111.028894.

    Article  CAS  Google Scholar 

  • Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004) Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053. DOI: 10.2337/diacare.27.5.1047.

    Article  Google Scholar 

  • World Health Organization (2013) Diabetes. Fact sheet no. 312. Retrieved March 2013, from http://www.who.int/mediacentre/factsheets/fs312/en/index.html

  • Xiao, J. B., & Kai, G. Y. (2012) A review of dietary polyphenolplasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Critical Reviews in Food Science and Nutrition, 52, 85–101. DOI: 10.1080/10408398.2010.499017.

    Article  CAS  Google Scholar 

  • Xiao, J. B. (2013) Polyphenol-plasma proteins interaction: Its nature, analytical techniques, and influence on bioactivities of polyphenols. Current Drug Metabolism, 14, 367–368. DOI: 10.2174/1389200211314040001.

    Article  CAS  Google Scholar 

  • Xiao, J. B., Ni, X. L., Kai, G. Y., & Chen, X. Q. (2013a) A review on structure-activity relationship of dietary polyphenols inhibiting a-amylase. Critical Reviews in Food Science and Nutrition, 53, 497–506. DOI: 10.1080/10408398.2010.548108.

    Article  CAS  Google Scholar 

  • Xiao, J. B., Kai, G. Y., Yamamoto, K., & Chen, X. Q. (2013b) Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition, 53, 818–836. DOI: 10.1080/10408398.2011.561379.

    Article  CAS  Google Scholar 

  • Xiao, J. B., & Högger, P. (2014) Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Current Medicinal Chemistry, 21, 1–16. DOI: 10.2174/0929867321666140706130807.

    Google Scholar 

  • Xiao, J. B., Chen, T. T., & Cao, H. (2014) Flavonoid glycosylation and biological benefits. Biotechnology Advances, in press. DOI: 10.1016/j.biotechadv.2014.05.004.

  • Xiao, J. B., Ni, X. L., Kai, G. Y., & Chen, X. Q. (2015) Advance in dietary polyphenols as aldose reductases inhibitors: Structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition, 55, 16–31. DOI: 10.1080/10408398.2011.584252.

    Article  CAS  Google Scholar 

  • Xie, Y. X., & Chen, X. Q. (2013) Structures required of polyphenols for inhibiting advanced glycation end products formation. Current Drug Metabolism, 14, 414–431. DOI: 10.2174/1389200211314040005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Chen, TT. & Cao, H. Flavonoids inhibiting glycation of bovine serum albumin: affinity-activity relationship. Chem. Pap. 69, 409–415 (2015). https://doi.org/10.1515/chempap-2015-0050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0050

Keywords

Navigation