Skip to main content

Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water

Abstract

The reaction of phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water was studied. The effects of various operating conditions, such as reaction temperature, reaction time, the mole ratio of phenylacetonitrile/water/methanol or ethanol on the product yield were systematically investigated. The optimal yield of methyl phenylacetate for phenylacetonitrile in supercritical methanol in a system containing a small volume of water was 70 % at 583 K and 2.5 h. The optimal yield of ethyl phenylacetate for phenylacetonitrile in supercritical ethanol with a small volume of water was 80 % at 583 K and 1.0 h. At the same time, a feasible mechanism was proposed for phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water.

This is a preview of subscription content, access via your institution.

References

  • Bicker, M., Kaiser, D., Ott, L., & Vogel, H. (2005) Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. Journal of Supercritical Fluids, 36, 118–126. DOI: 10.1016/j.supflu.2005.04.004.

    CAS  Article  Google Scholar 

  • Buttery, R. G., Ling, L. C., & Teranishi, R. (1980) Volatiles of corn tassels: possible corn ear worm attractants. Journal of Agricultural and Food Chemistry, 28, 771–774. DOI: 10.1021/jf60230a020.

    CAS  Article  Google Scholar 

  • Caruso, M.M., Blaiszik, B.J., White, S. R., Sottos, N. R., & Moore, J. S. (2008) Full recovery of francture toughness using a nontoxic solvent-based self-healing system. Advanced Functional Materials, 18, 1898–1904. DOI: 10.1002/adfm.200800300.

    CAS  Article  Google Scholar 

  • Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012) Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI: 10.2478/s11696-011-0093-3.

    CAS  Article  Google Scholar 

  • Demirbas, A. (2002) Biodiesel from vegetable oils via trans-esterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356. DOI: 10.1016/s0196-8904(01)00170-4.

    CAS  Article  Google Scholar 

  • Duan, P. G., Li, S., Yang, Y., Wang, Z. Z., & Dai, L. Y. (2009) Green medium for the hydrolysis of 5-cyanovaleramide. Chemical Engineering & Technology, 32, 771–777. DOI: 10.1002/ceat.200800607.

    CAS  Article  Google Scholar 

  • Gasson, E. J., & Hadley, D. J. (1960) U.S. Patent No. 2,921,088. Washington, D.C., USA: U.S. Patent and Trademark Office.

  • Goto, M. (2009) Chemical recycling of plastics using sub- and supercritical fluids. Journal of Supercritical Fluids, 47, 500–507. DOI: 10.1016/j.supflu.2008.10.011.

    CAS  Article  Google Scholar 

  • He, M. X., Feng, D. C., Zhu, F., & Cai, Z. T. (2004) Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide: DFT study of water and alcohol effects. Journal of Physical Chemistry A, 108, 7702–7708. DOI: 10.1021/jp048374s.

    CAS  Article  Google Scholar 

  • Kamitanaka, T., Yamamoto, K., Matsuda, T., & Harada, T. (2008) Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols. Tetrahedron, 64, 5699–5702. DOI: 10.1016/j.tet.2008.04.029.

    CAS  Article  Google Scholar 

  • Karlsson, M.F., Birgersson, G., Prado, A.M.C., Bosa, F., Bengtsson, M., & Witzgall, P. (2009) Plant odor analysis of potato: Response of guatemalan moth to above- and belowground potato volatiles. Journal of Agricultural and Food Chemistry, 57, 5903–5909. DOI: 10.1021/jf803730h.

    CAS  Article  Google Scholar 

  • Kusdiana, D., & Saka, S. (2004) Effect of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91, 289–295. DOI: 10.1016/s0960-8524(03)00201-3.

    CAS  Article  Google Scholar 

  • Lee, G. R., & Crayston, J. A. (1996) Hydrolysis of acetonitrile in the presence of NbCl5. Polyhedron, 15, 1817–1821. DOI: 10.1016/0277-5387(95)00432-7.

    CAS  Article  Google Scholar 

  • Madras, G., Kolluru, C., & Kumar, R. (2004) Synthesis of biodiesel in supercritical fluids. Fuel, 83, 2029–2033. DOI: 10.1016/j.fuel.2004.03.014.

    CAS  Article  Google Scholar 

  • Minami, E. J., & Saka, S. (2006) Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85, 2479–2483. DOI: 10.1016/j.fuel.2006.04.017.

    CAS  Article  Google Scholar 

  • Nomura, K., Ogura, H., & Imanishi, Y. (2002) Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. Journal of Molecular Catalysis A: Chemical, 178, 105–114. DOI: 10.1016/s1381-1169(01)00281-3.

    CAS  Article  Google Scholar 

  • Periasamy, M., Babu, N. K., & Jayakumar, K. N. (2003) A novel arylation of arylacetic acid esters using tertiary arylamines and TiCl4. Tetrahedron Letters, 44, 8939–8941. DOI: 10.1016/j.tetlet.2003.10.009.

    CAS  Article  Google Scholar 

  • Pinheiro, S., Lima, M.B., GonÇalves, C.B. S.S., Pedraza, S. F., & de Farias, F. M. C. (2000) Control of diasteroselectivity in the aldolization of methyl phenylacetate. Tetrahedron Letters, 41, 4033–4034. DOI: 10.1016/s0040-4039(00)00582-7.

    CAS  Article  Google Scholar 

  • Reeve, W., Erikson, C. M., & Aluotto, P. F. (1979) A new method for the determination of the relative acidities of alcohols in alcoholic solutions. The nucleophilicities and competitive reactivities of alkoxides and phenoxides. Canadian Journal of Chemistry, 57, 2747–2754. DOI: 10.1139/v79-444.

    CAS  Article  Google Scholar 

  • Schneekloth, J. S., Jr., Kim, J., & Sorensen, E. J. (2009) An interrupted Ugi reaction enables the preparation of substituted indoxyls and aminoindoles. Tetrahedron, 65, 3096–3101. DOI: 10.1016/j.tet.2008.08.055.

    CAS  Article  Google Scholar 

  • Škerget, S., Knez, Ž., & Knez-Hrnčič, M. (2011) Solubility of solids in sub- and supercritical fluids: a review. Journal of Chemical & Engineering Data, 56, 694–719. DOI: 10.1021/je1011373.

    Article  Google Scholar 

  • Song, E. S., Lim, J. W., Lee, H. S., & Lee, Y. W. (2008) Transesterification of RBD palm oil using supercritical methanol. Journal of Supercritical Fluids, 44, 356–363. DOI: 10.1016/j.supflu.2007.09.010.

    CAS  Article  Google Scholar 

  • Vieitez, I., da Silva, C., Alckmin, I., Borges, G. R., Corazza, F. C., Oliveira, J. V., Grompone, M. A., & Jachmanián, I. (2010) Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy, 35, 1976–1981. DOI: 10.1016/j.renene.2010.01.027.

    CAS  Article  Google Scholar 

  • Trivedi, V., Bhomia, R., Mitchell, J. C., Coleman, N. J., Douroumis, D., & Snowden, M. J. (2013) Study of the effect of pressure on melting behavior of saturated fatty acids in liquid or supercritical carbon dioxide. Journal of Chemical & Engineering Data, 58, 1861–1866. DOI: 10.1021/je400260c.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yuan Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, ZQ., Zhang, RZ., Luo, LG. et al. Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water. Chem. Pap. 69, 490–494 (2015). https://doi.org/10.1515/chempap-2015-0047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0047

Keywords

  • phenylacetonitrile
  • supercritical methanol/ethanol
  • methyl phenylacetate
  • ethyl phenylacetate
  • alcoholysis reaction mechanism