Skip to main content

Preparation of quaternary pyridinium salts as possible proton conductors

Abstract

On basis of earlier experimental experience, the transfer of protons in salts of the organic cation-inorganic anion type occurs primarily through directional arrangement of the anion-anion type short hydrogen bonds. The submitted work presents the preparation of quaternary pyridinium salts of inorganic hydrogen anions in the absence of solvent molecules in their crystal structure. These substances can form only the above-described anion-anion type hydrogen bonds; in addition, the absence of solvate anions increases the stability of the prepared compounds. A total of six substituted pyridinium salts were prepared, four of which have not been described yet: 1,2,4,6-tetraphenylpyridinium perchlorate, 1-benzyl-2,4,6-trimethylpyridinium perchlorate, 1,4-dimethylpyridinium hydrogen sulphate, 1,4-dimethylpyridinium dihydrogen phosphate, 1,4-dimethylpyridinium hydrogen sulphate, and 1,2-dimethyl-5-ethylpyridinium dihydrogen phosphate. Three of these substances were characterised by X-ray structural analysis: 1,2,4,6-tetraphenylpyridinium perchlorate crystallises in the orthorhombic system, space group Pbca; 1-benzyl-2,4,6-trimethylpyridinium perchlorate crystallises in the monoclinic system, space group P21/c; and 1,4-dimethylpyridinium dihydrogen phosphate crystallises in the monoclinic system, space group C2/c. This structure contains an oriented anion network bond by short anion-anion type hydrogen bonds with the donor acceptor lengths of 2.567(3) Å and 2.557(3) Å and thus fulfils the requirements of a good proton conductor.

This is a preview of subscription content, access via your institution.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M., & Spagna, R. (1997) SIR-97 [computer software]. Bari, Italy: Institute of Crystallography.

    Google Scholar 

  2. Hooft, R. W. W. (1998) COLLECT [computer software]. Delft, The Netherlands: Nonius.

    Google Scholar 

  3. Kaman, O., & Havlíček, D. (2005) Determination of crystal orientation of protonated diazabicyclooctane dihydrogenphosphate using powder diffraction technique in relation to study of proton conductors. Materials Structure, 12, 77–81. (in Czech)

    CAS  Google Scholar 

  4. Kaman, O., Smrčok, L’., Císařová, I., & Havlíček, D. (2011) Dihydrogen phosphate and hydrogen sulphate of 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane-1,4-diium: Crystal structures, hydrogen bonding and infrared spectra. Journal of Chemical Crystallography, 41, 1539–1546, DOI: 10.1007/s10870-011-0137-0.

    CAS  Article  Google Scholar 

  5. Mehta, V., & Cooper, J. S. (2003) Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114, 32–53. DOI: 10.1016/s0378-7753(02)00542-6.

    CAS  Article  Google Scholar 

  6. Li, M. Q., Shao, Z. G., & Scott, K. (2008) A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature. Journal of Power Sources, 183, 69–75. DOI: 10.1016/j.jpowsour.2008.04.093.

    CAS  Article  Google Scholar 

  7. Němec, I., Macháčková, Z., Teubner, K., Císařová, I., Vaněk, P., & Mička, Z. (2004) The structural phase transitions of aminoguanidinium(1+) dihydrogen phosphate—study of crystal structures, vibrational spectra and thermal behaviour. Journal of Solid State Chemistry, 177, 4655–4664. DOI: 10.1016/j.jssc.2004.08.010.

    Article  Google Scholar 

  8. Otwinowski, Z., & Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. In C. W. Carter, Jr., & R. M. Sweet (Eds.), Methods in enzymology (Vol. 276, pp. 307–326). New York, NY, USA: Academic Press.

    Google Scholar 

  9. Rikukawa, M., & Sanui, K. (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25, 1463–1502. DOI: 10.1016/s0079-6700(00)00032-0.

    CAS  Article  Google Scholar 

  10. Sheldrick, G. M. (1997) SHELXL-97, Program for crystal structure refinement from diffraction data [computer software]. Göttingen, Germany: University of Göttingen.

    Google Scholar 

  11. Smrčok, L’., Havlíček, D., Kaman, O., & Rundlöf, H. (2009) 1,4-diazabicyclo[2.2.2]octane-1,4-diium dihydrogen phosphate monohydrate from X-ray and neutron data. Zeitschrift für Kristallographie, 224, 174–178. DOI: 10.1524/zkri.2009.1127.

    Google Scholar 

  12. Spek, A. L. (1999) Platon [computer software]. Utrecht, The Netherlands: Utrecht University.

    Google Scholar 

  13. Taraba, L. (2012) Proton conductivity of powder samples. Bc. Thesis, Charles University in Prague, Czech Republic.

    Google Scholar 

  14. Urban, J., & Volke, J. (1994) 1,2,4,6-Substituted pyridinium derivatives-synthesis and properties. Collection of Czechoslovak Chemical Communications, 59, 2545–2561. DOI: 10.1135/cccc19942545.

    CAS  Article  Google Scholar 

  15. Volke, J., Urban, J., & Volkeová, V. (1992) The influence of substitution on the reduction mechanism and stability of reduction intermediates in 1,1′-phenylene-, 1,1′-diphenylene- and 1,1′-polymethylene-bispyridinium dications. Electrochimica Acta, 37, 2481–2490. DOI: 10.1016/0013-4686(92)87088-h.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Havlíček.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urban, J., Havlíček, D. & Krajbich, J. Preparation of quaternary pyridinium salts as possible proton conductors. Chem. Pap. 69, 448–455 (2015). https://doi.org/10.1515/chempap-2015-0037

Download citation

Keywords

  • quaternary pyridinium salts
  • synthesis
  • structural analysis
  • hydrogen bonding and proton conductivity