Skip to main content

Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes

Abstract

Non-standard experimental conditions can often enhance organocatalytic reactions considerably. The current study explores the effectiveness of a range of non-standard reaction conditions for the asymmetric organocatalytic 1,3-dipolar cycloaddition of a nitrone with α,β-unsaturated aldehydes. The influence of ionic liquids, high-pressure conditions, ultrasound, microwave irradiation and ball-milling was tested as well as the flow process. Because of the low reactivity of the nitrone and unsaturated aldehydes in the 1,3-dipolar cycloaddition, cycloadducts were isolated in only moderate yields from the majority of experiments. However, high diastereo- and enantioselectivities were observed in ionic liquids under solvent-free conditions and in the flow reactor.

This is a preview of subscription content, access via your institution.

References

  1. Ballini, R., Marcantoni, E., & Petrini, M. (1992). A nitrone-based approach to the enantioselective total synthesis of (−)-anisomycin. Journal of Organic Chemistry, 57, 1316–1318. DOI: 10.1021/jo00030a051.

    CAS  Article  Google Scholar 

  2. Bruckmann, A., Krebs, A., & Bolm, C. (2008). Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chemistry, 10, 1131–1141. DOI: 10.1039/b812536h.

    CAS  Article  Google Scholar 

  3. Chauhan, P., & Chimni, S. S. (2012). Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein Journal of Organic Chemistry, 8, 2132–2141. DOI: 10.3762/bjoc.8.240.

    CAS  Article  Google Scholar 

  4. Chow, S. S., Nevalainen, M., Evans, C. A., & Johannes, C. W. (2007). A new organocatalyst for 1,3-dipolar cycloadditions of nitrones to α,β-unsaturated aldehydes. Tetrahedron Letters, 48, 277–280. DOI: 10.1016/j.tetlet.2006.11.029.

    CAS  Article  Google Scholar 

  5. Chua, P. J., Tan, B., Yang, L., Zeng, X., Zhu, D., & Zhong, G. (2010). Highly stereoselective synthesis of indanes with four stereogenic centers via sequential Michael reaction and [3 + 2] cycloaddition. Chemical Communications, 46, 7611–7613. DOI: 10.1039/c0cc01577f.

    CAS  Article  Google Scholar 

  6. Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chemical Society Reviews, 35, 180–196. DOI: 10.1039/b503848k.

    CAS  Article  Google Scholar 

  7. Du, W., Liu, Y. K., Yue, L., & Chen, Y. C. (2008). Organocatalytic asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins. Synlett, 2997–3000. DOI: 10.1055/s-0028-1087300.

  8. Gioia, C., Fini, F., Mazzanti, A., Bernardi, L., & Ricci, A. (2009). Organocatalytic asymmetric formal [3 + 2] cycloaddition with in situ-generated N-carbamoyl nitrones. Journal of the American Chemical Society, 131, 9614–9615. DOI: 10.1021/ja902458m.

    CAS  Article  Google Scholar 

  9. Gribble, G. W., & Barden, T. C. (1985). Stereocontrolled total syntheses of (−)-hobartine and (+)-aristoteline via an intramolecular nitrone-olefin cycloaddition. Journal of Organic Chemistry, 50, 5900–5902. DOI: 10.1021/jo00350a103.

    CAS  Article  Google Scholar 

  10. Hernández, J. G., & Juaristi, E. (2012). Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chemical Communications, 48, 5396–5409. DOI: 10.1039/c2cc30951c.

    Article  Google Scholar 

  11. James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., & Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41, 413–447. DOI: 10.1039/c1cs15171a.

    CAS  Article  Google Scholar 

  12. Jen, W. S., Wiener, J. J. M., & MacMillan, D. W. C. (2000). New strategies for organic catalysis: the first enantioselective organocatalytic 1,3-dipolar cycloaddition. Journal of the American Chemical Society, 122, 9874–9875. DOI: 10.1021/ja005517p.

    CAS  Article  Google Scholar 

  13. Jiao, P., Nakashima, D., & Yamamoto, H. (2008). Enantioselective 1,3-dipolar cycloaddition of nitrones with ethyl vinyl ether: The difference between Brønsted and Lewis acid catalysis. Angewandte Chemie International Edition, 47, 2411–2413. DOI: 10.1002/anie.200705314.

    CAS  Article  Google Scholar 

  14. Karlsson, S., & Högberg, H. E. (2002). Catalytic enantioselective 1,3-dipolar cycloaddition of nitrones to cyclopent-1-enecarbaldehyde. Tetrahedron: Asymmetry, 13, 923–926. DOI: 10.1016/s0957-4166(02)00231-8.

    CAS  Article  Google Scholar 

  15. Karlsson, S., & Högberg, H. E. (2003). Organocatalysts promote enantioselective 1,3-dipolar cycloadditions of nitrones with 1-cycloalkene-1-carboxaldehydes. European Journal of Organic Chemistry, 2003, 2782–2791. DOI: 10.1002/ejoc.200300172.

    Article  Google Scholar 

  16. Kobayashi, S., & JÖrgensen, A. K. (2002). Cycloaddition reactions in organic synthesis. Weinheim, Germany: Wiley.

    Google Scholar 

  17. Lemay, M., Trant, J., & Ogilvie, W. W. (2007). Hydrazide-catalyzed 1,3-dipolar nitrone cycloadditions. Tetrahedron, 63, 11644–11655. DOI: 10.1016/j.tet.2007.08.110.

    CAS  Article  Google Scholar 

  18. Mečiarová, M., Mojzesová, M., & Šebesta, R. (2013). Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids. Chemical Papers, 67, 51–58. DOI: 10.2478/s11696-012-0208-5.

    Google Scholar 

  19. Najera, C., & Sansano, J. M. (2009). 1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Organic and Biomolecular Chemistry, 7, 4567–4581. DOI: 10.1039/b913066g.

    CAS  Article  Google Scholar 

  20. Pagoti, S., Dutta, D., & Dash, J. (2013). A magnetoclick imidazolidinone nanocatalyst for asymmetric 1,3-dipolar cycloadditions. Advanced Synthesis & Catalysis, 355, 3532–3538. DOI: 10.1002/adsc.201300624.

    CAS  Article  Google Scholar 

  21. Pellissier, H. (2007). Asymmetric 1,3-dipolar cycloadditions. Tetrahedron, 63, 3235–3285. DOI: 10.41016/j.tet.2007.01.009.

    CAS  Article  Google Scholar 

  22. Pellissier, H. (2012). Asymmetric organocatalytic cycloadditions. Tetrahedron, 68, 2197–2232. DOI: 10.1016/j.tet.2011.10.103.

    CAS  Article  Google Scholar 

  23. Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst. European Journal of Organic Chemistry, 2004, 567–573. DOI: 10.1002/ejoc.200300571.

    Article  Google Scholar 

  24. Puglisi, A., Benaglia, M., & Chiroli, V. (2013). Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chemistry, 15, 1790–1813. DOI: 10.1039/c3gc40195b.

    CAS  Article  Google Scholar 

  25. Raimondi, W., Lettieri, G., Dulcere, J. P., Bonne, D., & Rodriguez, J. (2010). One-pot asymmetric cyclocarbohydroxylation sequence for the enantioselective synthesis of function alised cyclopentanes. Chemical Communications, 46, 7247–7249. DOI: 10.1039/c0cc01940b.

    CAS  Article  Google Scholar 

  26. Rios, R., Ibrahem, I., Vesely, J., Zhao, G. L., & Córdova, A. (2007). A simple one-pot, three-component, catalytic, highly enantioselective isoxazolidine synthesis. Tetrahedron Letters, 48, 5701–5705. DOI: 10.1016/j.tetlet.2007.05.176.

    CAS  Article  Google Scholar 

  27. Selim, K. B., Beauchard, A., Lhoste, J., Martel, A., Laurent, M. Y., & Dujardin, G. (2012). Organocatalytic enantio- and diastereoselective 1,3-dipolar cycloaddition between alanine-derived ketonitrones and E-crotonaldehyde: efficiency and full stereochemical studies. Tetrahedron: Asymmetry, 23, 1670–1677. DOI: 10.1016/j.tetasy.2012.11.010.

    CAS  Article  Google Scholar 

  28. Shen, Z. L., Goh, K. K. K., Wong, C. H. A., Loo, W. Y., Yang, Y. S., Lu, J., & Loh, T.. (2012). Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chemical Communications, 48, 5856–5858. DOI: 10.1039/c2cc31830j.

    CAS  Article  Google Scholar 

  29. Stanley, L. M., & Sibi, M. P. (2008). Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chemical Reviews, 108, 2887–2902. DOI: 10.1021/cr078371m.

    CAS  Article  Google Scholar 

  30. Tan, B., Zhu, D., Zhang, L., Chua, P. J., Zeng, X., & Zhong, G. (2010). Water-more than just a green solvent: a stereoselective one-pot access to all-chiral tetrahydronaphthalenes in aqueous media. Chemistry — A European Journal, 16, 3842–3848. DOI: 10.1002/chem.200902932.

    CAS  Article  Google Scholar 

  31. Thorwirth, R., Stolle, A., & Ondruschka, B. (2010). Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chemistry, 12, 985–991. DOI: 10.1039/c000674b.

    CAS  Article  Google Scholar 

  32. Toma, Š., Šebesta, R., & Mečiarová, M. (2011). Organocatalytic reactions under unusual condition. Current Organic Chemistry, 15, 2257–2281. DOI: 10.2174/138527211796150723.

    CAS  Article  Google Scholar 

  33. Turro, N. J., Okamoto, M., Gould, I. R., Moss, R. A., Lawrynowicz, W., & Hadel, L. M. (1987). Volumes of activation for the cycloaddition reactions of phenylhalocarbenes to alkenes. Journal of the American Chemical Society, 109, 4973–4976. DOI: 10.1021/ja00250a035.

    CAS  Article  Google Scholar 

  34. Vesely, J., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L., & Córdova, A. (2008). One-pot catalytic asymmetric cascade synthesis of cycloheptane derivatives. Chemistry — A European Journal, 14, 2693–2698. DOI: 10.1002/chem.200701918.

    CAS  Article  Google Scholar 

  35. Weseliński, Ł., Stępniak, P., & Jurczak, J. (2009). Hybrid diamines derived from 1,1′-binaphthyl-2,2′-diamine and α-amino acids as organocatalysts for 1,3-dipolar cycloaddition of aromatic nitrones to (E)-crotonaldehyde. Synlett, 2261–2264. DOI: 10.1055/s-0029-1217808.

  36. Weseliński, Ł., Słyk, E., & Jurczak, J. (2011). The highly enantioselective 1,3-dipolar cycloaddition of alkyl glyoxylate-derived nitrones to E-crotonaldehyde catalyzed by hybrid diamines. Tetrahedron Letters, 52, 381–384. DOI: 10.1016/j.tetlet.2010.11.015.

    Article  Google Scholar 

  37. Weseliński, Ł., Kalinowska, E., & Jurczak, J. (2012). The asymmetric organocatalytic 1,3-dipolar cycloaddition of alkyl pyruvate-derived nitrones and α,β-unsaturated aldehydes. Tetrahedron: Asymmetry, 23, 264–270. DOI: 10.1016/j.tetasy.2012.02.003.

    Article  Google Scholar 

  38. Xing, Y., & Wang, N. X. (2012). Organocatalytic and metalmediated asymmetric [3 + 2] cycloaddition reactions. Coordination Chemistry Reviews, 256, 938–952. DOI: 10.1016/j.ccr.2012.01.002.

    CAS  Article  Google Scholar 

  39. Zhao, D., & Ding, K. (2013). Recent advances in asymmetric catalysis in flow. ACS Catalysis, 3, 928–944. DOI: 10.1021/cs300830x.

    CAS  Article  Google Scholar 

  40. Zhu, D., Lu, M., Dai, L., & Zhong, G. (2009). Highly stereoselective one-pot synthesis of bicyclic isoxazolidines with five stereogenic centers by an organocatalytic process. Angewandte Chemie International Edition, 48, 6089–6092. DOI: 10.1002/anie.200901249.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radovan Šebesta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mojzesová, M., Mečiarová, M., Almássy, A. et al. Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes. Chem. Pap. 69, 737–746 (2015). https://doi.org/10.1515/chempap-2015-0020

Download citation

Keywords

  • dipolar cycloaddition
  • ball-milling
  • flow reactor
  • ionic liquids
  • microwave
  • ultrasound