Skip to main content
Log in

Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes

Chemical Papers Aims and scope Submit manuscript

Abstract

Non-standard experimental conditions can often enhance organocatalytic reactions considerably. The current study explores the effectiveness of a range of non-standard reaction conditions for the asymmetric organocatalytic 1,3-dipolar cycloaddition of a nitrone with α,β-unsaturated aldehydes. The influence of ionic liquids, high-pressure conditions, ultrasound, microwave irradiation and ball-milling was tested as well as the flow process. Because of the low reactivity of the nitrone and unsaturated aldehydes in the 1,3-dipolar cycloaddition, cycloadducts were isolated in only moderate yields from the majority of experiments. However, high diastereo- and enantioselectivities were observed in ionic liquids under solvent-free conditions and in the flow reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ballini, R., Marcantoni, E., & Petrini, M. (1992). A nitrone-based approach to the enantioselective total synthesis of (−)-anisomycin. Journal of Organic Chemistry, 57, 1316–1318. DOI: 10.1021/jo00030a051.

    Article  CAS  Google Scholar 

  • Bruckmann, A., Krebs, A., & Bolm, C. (2008). Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chemistry, 10, 1131–1141. DOI: 10.1039/b812536h.

    Article  CAS  Google Scholar 

  • Chauhan, P., & Chimni, S. S. (2012). Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein Journal of Organic Chemistry, 8, 2132–2141. DOI: 10.3762/bjoc.8.240.

    Article  CAS  Google Scholar 

  • Chow, S. S., Nevalainen, M., Evans, C. A., & Johannes, C. W. (2007). A new organocatalyst for 1,3-dipolar cycloadditions of nitrones to α,β-unsaturated aldehydes. Tetrahedron Letters, 48, 277–280. DOI: 10.1016/j.tetlet.2006.11.029.

    Article  CAS  Google Scholar 

  • Chua, P. J., Tan, B., Yang, L., Zeng, X., Zhu, D., & Zhong, G. (2010). Highly stereoselective synthesis of indanes with four stereogenic centers via sequential Michael reaction and [3 + 2] cycloaddition. Chemical Communications, 46, 7611–7613. DOI: 10.1039/c0cc01577f.

    Article  CAS  Google Scholar 

  • Cravotto, G., & Cintas, P. (2006). Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chemical Society Reviews, 35, 180–196. DOI: 10.1039/b503848k.

    Article  CAS  Google Scholar 

  • Du, W., Liu, Y. K., Yue, L., & Chen, Y. C. (2008). Organocatalytic asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins. Synlett, 2997–3000. DOI: 10.1055/s-0028-1087300.

  • Gioia, C., Fini, F., Mazzanti, A., Bernardi, L., & Ricci, A. (2009). Organocatalytic asymmetric formal [3 + 2] cycloaddition with in situ-generated N-carbamoyl nitrones. Journal of the American Chemical Society, 131, 9614–9615. DOI: 10.1021/ja902458m.

    Article  CAS  Google Scholar 

  • Gribble, G. W., & Barden, T. C. (1985). Stereocontrolled total syntheses of (−)-hobartine and (+)-aristoteline via an intramolecular nitrone-olefin cycloaddition. Journal of Organic Chemistry, 50, 5900–5902. DOI: 10.1021/jo00350a103.

    Article  CAS  Google Scholar 

  • Hernández, J. G., & Juaristi, E. (2012). Recent efforts directed to the development of more sustainable asymmetric organocatalysis. Chemical Communications, 48, 5396–5409. DOI: 10.1039/c2cc30951c.

    Article  Google Scholar 

  • James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K. D. M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A. G., Parkin, I. P., Shearouse, W. C., Steed, J. W., & Waddell, D. C. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41, 413–447. DOI: 10.1039/c1cs15171a.

    Article  CAS  Google Scholar 

  • Jen, W. S., Wiener, J. J. M., & MacMillan, D. W. C. (2000). New strategies for organic catalysis: the first enantioselective organocatalytic 1,3-dipolar cycloaddition. Journal of the American Chemical Society, 122, 9874–9875. DOI: 10.1021/ja005517p.

    Article  CAS  Google Scholar 

  • Jiao, P., Nakashima, D., & Yamamoto, H. (2008). Enantioselective 1,3-dipolar cycloaddition of nitrones with ethyl vinyl ether: The difference between Brønsted and Lewis acid catalysis. Angewandte Chemie International Edition, 47, 2411–2413. DOI: 10.1002/anie.200705314.

    Article  CAS  Google Scholar 

  • Karlsson, S., & Högberg, H. E. (2002). Catalytic enantioselective 1,3-dipolar cycloaddition of nitrones to cyclopent-1-enecarbaldehyde. Tetrahedron: Asymmetry, 13, 923–926. DOI: 10.1016/s0957-4166(02)00231-8.

    Article  CAS  Google Scholar 

  • Karlsson, S., & Högberg, H. E. (2003). Organocatalysts promote enantioselective 1,3-dipolar cycloadditions of nitrones with 1-cycloalkene-1-carboxaldehydes. European Journal of Organic Chemistry, 2003, 2782–2791. DOI: 10.1002/ejoc.200300172.

    Article  Google Scholar 

  • Kobayashi, S., & JÖrgensen, A. K. (2002). Cycloaddition reactions in organic synthesis. Weinheim, Germany: Wiley.

    Google Scholar 

  • Lemay, M., Trant, J., & Ogilvie, W. W. (2007). Hydrazide-catalyzed 1,3-dipolar nitrone cycloadditions. Tetrahedron, 63, 11644–11655. DOI: 10.1016/j.tet.2007.08.110.

    Article  CAS  Google Scholar 

  • Mečiarová, M., Mojzesová, M., & Šebesta, R. (2013). Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids. Chemical Papers, 67, 51–58. DOI: 10.2478/s11696-012-0208-5.

    Google Scholar 

  • Najera, C., & Sansano, J. M. (2009). 1,3-Dipolar cycloadditions: applications to the synthesis of antiviral agents. Organic and Biomolecular Chemistry, 7, 4567–4581. DOI: 10.1039/b913066g.

    Article  CAS  Google Scholar 

  • Pagoti, S., Dutta, D., & Dash, J. (2013). A magnetoclick imidazolidinone nanocatalyst for asymmetric 1,3-dipolar cycloadditions. Advanced Synthesis & Catalysis, 355, 3532–3538. DOI: 10.1002/adsc.201300624.

    Article  CAS  Google Scholar 

  • Pellissier, H. (2007). Asymmetric 1,3-dipolar cycloadditions. Tetrahedron, 63, 3235–3285. DOI: 10.41016/j.tet.2007.01.009.

    Article  CAS  Google Scholar 

  • Pellissier, H. (2012). Asymmetric organocatalytic cycloadditions. Tetrahedron, 68, 2197–2232. DOI: 10.1016/j.tet.2011.10.103.

    Article  CAS  Google Scholar 

  • Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst. European Journal of Organic Chemistry, 2004, 567–573. DOI: 10.1002/ejoc.200300571.

    Article  Google Scholar 

  • Puglisi, A., Benaglia, M., & Chiroli, V. (2013). Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chemistry, 15, 1790–1813. DOI: 10.1039/c3gc40195b.

    Article  CAS  Google Scholar 

  • Raimondi, W., Lettieri, G., Dulcere, J. P., Bonne, D., & Rodriguez, J. (2010). One-pot asymmetric cyclocarbohydroxylation sequence for the enantioselective synthesis of function alised cyclopentanes. Chemical Communications, 46, 7247–7249. DOI: 10.1039/c0cc01940b.

    Article  CAS  Google Scholar 

  • Rios, R., Ibrahem, I., Vesely, J., Zhao, G. L., & Córdova, A. (2007). A simple one-pot, three-component, catalytic, highly enantioselective isoxazolidine synthesis. Tetrahedron Letters, 48, 5701–5705. DOI: 10.1016/j.tetlet.2007.05.176.

    Article  CAS  Google Scholar 

  • Selim, K. B., Beauchard, A., Lhoste, J., Martel, A., Laurent, M. Y., & Dujardin, G. (2012). Organocatalytic enantio- and diastereoselective 1,3-dipolar cycloaddition between alanine-derived ketonitrones and E-crotonaldehyde: efficiency and full stereochemical studies. Tetrahedron: Asymmetry, 23, 1670–1677. DOI: 10.1016/j.tetasy.2012.11.010.

    Article  CAS  Google Scholar 

  • Shen, Z. L., Goh, K. K. K., Wong, C. H. A., Loo, W. Y., Yang, Y. S., Lu, J., & Loh, T.. (2012). Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chemical Communications, 48, 5856–5858. DOI: 10.1039/c2cc31830j.

    Article  CAS  Google Scholar 

  • Stanley, L. M., & Sibi, M. P. (2008). Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chemical Reviews, 108, 2887–2902. DOI: 10.1021/cr078371m.

    Article  CAS  Google Scholar 

  • Tan, B., Zhu, D., Zhang, L., Chua, P. J., Zeng, X., & Zhong, G. (2010). Water-more than just a green solvent: a stereoselective one-pot access to all-chiral tetrahydronaphthalenes in aqueous media. Chemistry — A European Journal, 16, 3842–3848. DOI: 10.1002/chem.200902932.

    Article  CAS  Google Scholar 

  • Thorwirth, R., Stolle, A., & Ondruschka, B. (2010). Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chemistry, 12, 985–991. DOI: 10.1039/c000674b.

    Article  CAS  Google Scholar 

  • Toma, Š., Šebesta, R., & Mečiarová, M. (2011). Organocatalytic reactions under unusual condition. Current Organic Chemistry, 15, 2257–2281. DOI: 10.2174/138527211796150723.

    Article  CAS  Google Scholar 

  • Turro, N. J., Okamoto, M., Gould, I. R., Moss, R. A., Lawrynowicz, W., & Hadel, L. M. (1987). Volumes of activation for the cycloaddition reactions of phenylhalocarbenes to alkenes. Journal of the American Chemical Society, 109, 4973–4976. DOI: 10.1021/ja00250a035.

    Article  CAS  Google Scholar 

  • Vesely, J., Rios, R., Ibrahem, I., Zhao, G. L., Eriksson, L., & Córdova, A. (2008). One-pot catalytic asymmetric cascade synthesis of cycloheptane derivatives. Chemistry — A European Journal, 14, 2693–2698. DOI: 10.1002/chem.200701918.

    Article  CAS  Google Scholar 

  • Weseliński, Ł., Stępniak, P., & Jurczak, J. (2009). Hybrid diamines derived from 1,1′-binaphthyl-2,2′-diamine and α-amino acids as organocatalysts for 1,3-dipolar cycloaddition of aromatic nitrones to (E)-crotonaldehyde. Synlett, 2261–2264. DOI: 10.1055/s-0029-1217808.

  • Weseliński, Ł., Słyk, E., & Jurczak, J. (2011). The highly enantioselective 1,3-dipolar cycloaddition of alkyl glyoxylate-derived nitrones to E-crotonaldehyde catalyzed by hybrid diamines. Tetrahedron Letters, 52, 381–384. DOI: 10.1016/j.tetlet.2010.11.015.

    Article  Google Scholar 

  • Weseliński, Ł., Kalinowska, E., & Jurczak, J. (2012). The asymmetric organocatalytic 1,3-dipolar cycloaddition of alkyl pyruvate-derived nitrones and α,β-unsaturated aldehydes. Tetrahedron: Asymmetry, 23, 264–270. DOI: 10.1016/j.tetasy.2012.02.003.

    Article  Google Scholar 

  • Xing, Y., & Wang, N. X. (2012). Organocatalytic and metalmediated asymmetric [3 + 2] cycloaddition reactions. Coordination Chemistry Reviews, 256, 938–952. DOI: 10.1016/j.ccr.2012.01.002.

    Article  CAS  Google Scholar 

  • Zhao, D., & Ding, K. (2013). Recent advances in asymmetric catalysis in flow. ACS Catalysis, 3, 928–944. DOI: 10.1021/cs300830x.

    Article  CAS  Google Scholar 

  • Zhu, D., Lu, M., Dai, L., & Zhong, G. (2009). Highly stereoselective one-pot synthesis of bicyclic isoxazolidines with five stereogenic centers by an organocatalytic process. Angewandte Chemie International Edition, 48, 6089–6092. DOI: 10.1002/anie.200901249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Šebesta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojzesová, M., Mečiarová, M., Almássy, A. et al. Assessment of non-standard reaction conditions for asymmetric 1,3-dipolar organocatalytic cycloaddition of nitrone with α,β-unsaturated aldehydes. Chem. Pap. 69, 737–746 (2015). https://doi.org/10.1515/chempap-2015-0020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0020

Keywords

Navigation