Skip to main content

Laser microsampling and multivariate methods in provenance studies of obsidian artefacts

Abstract

The provenance of obsidian artefacts and raw materials was studied by the multivariate statistical analysis of forty-five samples using elemental composition data obtained by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). One ICP-MS instrument equipped with a quadrupole mass filter and the other based on a time-of-flight analyser were coupled to the same type of laser ablation device (Nd:YAG 213 nm), thereby affording a comparison of the different mass spectrometers in terms of precision and verification of the consistency of the results. The influence of surface roughness (polished raw material vs artefact) and microinhomogeneity on the LA-ICP-MS signal was studied under the optimised working conditions of the laser ablation device. Principal component analysis, correspondence analysis, independent component analysis, multi-dimensional scaling, Sammon mapping and fuzzy cluster analysis were applied and compared in order to reveal statistically significant compositional differences between particular geological sites and to disclose the provenance of the raw materials used in manufacture of the artefacts. Twenty-seven artefacts and eighteen raw material samples from natural resources in the Czech Republic, Slovakia, Italy, Greece, Syria, Iraq, Turkey, Mexico and Nicaragua were examined with special attention focused on samples from Moravia (Czech Republic) and some Near East sites (Tell Arbid, Tell Asmar). The Carpathian origin of the obsidian artefacts was investigated in the Moravian samples using the Pb, Rb and U contents. The Near East samples were classified according to their Sr, Ba, Zr and REE contents as per-alkaline obsidians (Bingöl A/Nemrut Dağ) originating from Southeast Anatolia.

This is a preview of subscription content, access via your institution.

References

  • Abbés, F., Bellot-Gurlet, L., Bressy, C., Cauvin, M. C., Gratuze, B., & Poupeau, G. (2001) Nouvelles recherches sur l’obsidienne de Cheikh Hassan (vallée de l’Euphrate, Syrie) au néolithique: PPNA et PPNB ancient. Syria, 78, 5–17. DOI: 10.3406/syria.2001.7727. (in French)

    Article  Google Scholar 

  • Baxter, M. J. (2006) A review of supervised and unsupervised pattern recognition in archaeometry. Archaeometry, 48, 671–694.DOI: 10.1111/j.1475-4754.2006.00280.x.

    CAS  Article  Google Scholar 

  • Baxter, M. J. (2009) Archaeological data analysis and fuzzy clustering. Archaeometry, 51, 1035–1054.DOI: 10.1111/j.1475-4754.2008.00449.x.

    Article  Google Scholar 

  • Biagi, P., de Francesco, A. M., & Bocci, M. (2007) New data on the archaeological obsidian from the Middle-Late Neolithic and Chalcolithic sites of the Banat and Transylvania (Romania). In J. K. Kozłowski, & P. Raczky (Eds.), The Lengyel, Polgár and related cultures in the Middle/Late Neolithic in Central Europe (pp. 309–326). Kraków, Poland: PAAS.

    Google Scholar 

  • Biró, K. T. (2004) Carpathian obsidians: Myth and reality. In Proceedings of the 34th International Symposium on Archaeometry, May 3–7, 2004 (pp. 267–277). Zaragoza, Spain: C.S.I.C.

    Google Scholar 

  • Bollong, C. A., Jacobson, L., Peisach, M., Pineda, C. A., & Sampson, C. G. (1997) Ordination versus clustering of elemental data from PIXE analysis of herder-hunter pottery: a comparison. Journal of Archaeological Science, 24, 319–327.DOI: 10.1006/jasc.1996.0116.

    Article  Google Scholar 

  • Chataigner, C., Poidevin, J. L., & Arnaud, N. O. (1998) Turkish occurences of obsidian and use by prehistoric peoples in the Near East from 14,000 to 6000 BP. Journal of Volcanology and Geothermal Research, 85, 517–537.DOI: 10.1016/s0377-0273(98)00069-9.

    CAS  Article  Google Scholar 

  • Constantinescu, B., Bugoi, R., & Sziki, G. (2002) Obsidian provenance studies of Transylvania’s Neolithic tools using PIXE, micro-PIXE and XRF. Nuclear Instruments and Methods in Physics Research B, 189, 373–377.DOI: 10.1016/s0168-583x(01)01092-8.

    CAS  Article  Google Scholar 

  • Culicov, O. A., Frontasyeva, M. V., & Daraban, L. (2012) Characterization of obsidian found in Romania by neutron activation method. Romanian Reports in Physics, 64, 609–618.

    CAS  Google Scholar 

  • de Barros, C. E., Nardi, L. V. S., Dillenburg, S. R., Ayup, R., Jarvis, K., & Baitelli, R. (2010) Detrital minerals of modern beach sediments in southern Brazil: A provenance study based on the chemistry of zircon. Journal of Coastal Research, 26, 80–93.DOI: 10.2112/06-0817.1.

    Article  Google Scholar 

  • Elburg, M., Elburg, R., & Greig, A. (2002) Obsidian in Sachsen und die Verwendung von ICP-MS zur Herkunftsbestimmung von Rohmaterialien. Arbeits- und Forschungsberichte zur Sächsischen Bodendenkmalpflege, 44, 391–397. (in German)

    Google Scholar 

  • Forster, N., & Grave, P. (2012) Non-destructive PXRF analysis of museum-curated obsidian from the Near East. Journal of Archaeological Science, 39, 728–736.DOI: 10.1016/j.jas.2011.11.004.

    CAS  Article  Google Scholar 

  • Frahm, E. (2012) Distinguishing Nemrut Dağ and Bingöl A obsidians: geochemical and landscape differences and the archaeological implications. Journal of Archaeological Science, 39, 1436–1444.DOI: 10.1016/j.jas.2011.12.038.

    CAS  Article  Google Scholar 

  • Galiová, M., Kaiser, J., Fortes, F. J., Novotný, K., Malina, R., Prokeš, L., Hrdlička, A., Vaculovič, T., Nývltová Fišáková, M., Svoboda, J., Kanický, V., & Laserna, J. J. (2010) Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Applied Optics, 49, C191–C199. DOI: 10.1364/ao.49.00c191.

    Article  Google Scholar 

  • Gholap, D. S., Izmer, A., De Samber, B., van Elteren, J. T., Šelih, V.S., Evens, R., De Schamphelaere, K., Janssen, C., Balcaen, L., Lindemann, I., Vincze, L., & Vanhaecke, F. (2010) Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna. Analytica Chimica Acta, 664, 19–26.DOI: 10.1016/j.aca.2010.01.052.

    CAS  Article  Google Scholar 

  • Golitko, M., Meierhoff, J., Feinman, G. M., & Williams, P. R. (2012) Complexities of collapse: the evidence of Maya obsidian as revealed by social network graphical analysis. Antiquity, 86, 507–523.

    Article  Google Scholar 

  • Gratuze, B. (1999) Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science, 26, 869–881.DOI: 10.1006/jasc.1999.0459.

    Article  Google Scholar 

  • Hare, D., Austin, C., Doble, P., & Arora, M. (2011) Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. Journal of Dentistry, 39, 397–403.DOI: 10.1016/j.jdent.2011.03.004.

    CAS  Article  Google Scholar 

  • Healey, E. (2007) Obsidian as an indicator of inter-regional contacts and exchange: three case-studies from the Halaf period. Anatolian Studies, 57, 171–189.DOI: 10.1017/s0066154600008590.

    Article  Google Scholar 

  • Hrdlička, A., Prokeš, L., Vašinová Galiová, M., Novotný, K., Vitešníková, A., Helešicová, T., & Kanický, V. (2013) Provenance study of volcanic glass with 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy. Chemical Papers, 67, 546–555.DOI: 10.2478/s11696-013-0332-x.

    Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000) Independent component analysis: algorithms and applications. Neural Networks, 13, 411–430.DOI: 10.1016/s0893-6080(00)00026-5.

    Article  Google Scholar 

  • Kasztovszky, Z., Szilágii, V., Biró, K. T., Těžak-Gregl, T., Burić, M., Šošić, R., & Szakmány, G. (2009) Horvát és Bosnyák régészeti lelöhelyekröl származó obszidián eszközök eredetvizsgálata PGAA-val. Archeometriai Mühely, VI/3, 5–14. (in Hungarian)

    Google Scholar 

  • Kilikoglou, V., Bassiakos, Y., Grimanis, A. P., Souvatzis, K., Pilali-Papasteriou, A., & Papanthimou-Papaefthimiou, A. (1996) Carpathian obsidian in Macedonia, Greece. Journal of Archaeological Science, 23, 343–349.DOI: 10.1006/jasc.1996.0032.

    Article  Google Scholar 

  • Kowalski, B. R., Schatzki, T. F., & Stross, F. H. (1972) Classification of archaeological artifacts by applying pattern recognition to trace element data. Analytical Chemistry, 44, 2176–2180.DOI: 10.1021/ac60321a002.

    CAS  Article  Google Scholar 

  • Lessig, V. P. (1972) Comparing cluster analyses with cophenetic correlation. Journal of Marketing Research, 9, 82–84.DOI: 10.2307/3149615.

    Article  Google Scholar 

  • Lu, Y., Zhang, Y., Lai, Y., & Wang, Y. (2009) LA-ICPMS zircon U-Pb dating of magmatism and mineralization in the Jinchang gold ore-field, Heilongjiang province. Acta Petrologica Sinica, 2009, 2902–2912.

    Google Scholar 

  • Novotný, K., Kaiser, J., Galiová, M., Konečná, V., Novotný, J., Malina, R., Liška, M., Kanický, V., & Otruba, V. (2008) Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1139–1144.DOI: 10.1016/j.sab.2008.06.011.

    Article  Google Scholar 

  • Oddone, M., Márton, P., Bigazzi, G., & Biró, K. T. (1999) Chemical characterisations of Carpathian obsidian sources by instrumental and epithermal neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 240, 147–153.DOI: 10.1007/bf02349147.

    CAS  Article  Google Scholar 

  • Peisach, M., Jacobson, L., Boulle, G. J., Gihwala, D., & Underhill, L. G. (1982) Multivariate analysis of trace elements determined in archaeological materials and its use for characterisation. Journal of Radioanalytical Chemistry, 69, 349–364.DOI: 10.1007/bf02515934.

    CAS  Article  Google Scholar 

  • Přichystal, A. (2013) Lithic raw materials in prehistoric times of Eastern Central Europe. Brno, Czech Republic: Masaryk University Press.

    Google Scholar 

  • Punyadeera, C., Pillay, A. E., Jacobson, L., & Whitelaw, G. (1997) Application of XRF and correspondence analysis to provenance studies of coastal and inland archaeological pottery from the Mngeni river area, South Africa. X-Ray Spectrometry, 26, 249–256.DOI: 10.1002/(SICI)1097-4539(199709)26:5<249::AID-XRS188>3.0.CO;2-5.

    CAS  Article  Google Scholar 

  • Randle, K., Barfield, B. H., & Bagolini, B. (1993) Recent Italian obsidian analyses. Journal of Archaeological Science, 20, 503–509.DOI: 10.1006/jasc.1993.1031.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17, 185–206.DOI: 10.1016/s0883-2927(01)00066-x.

    CAS  Article  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R., & Dutter, R. (2008) Statistical data analysis explained: Applied environmental statistics with R. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Sammon, J. W. (1969) A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18, 401–409.DOI: 10.1109/t-c.1969.222678.

    Article  Google Scholar 

  • Shackley, M. S. (2005) Obsidian. Geology and archaeology in the North American Southwest. Tucson, AZ, USA: University of Arizona Press.

    Google Scholar 

  • Tripković, B., & Milić, M. (2008): The origin and exchange of obsidian from Vinča — Belo Brdo. Starinar, 58, 71–86.DOI: 10.2298/sta0858071t.

    Article  Google Scholar 

  • Tykot, R. H. (2002) Chemical fingerprinting and source tracing of obsidian: The Central Mediterranean trade in black gold. Accounts of Chemical Research, 35, 618–627.DOI: 10.1021/ar000208p.

    CAS  Article  Google Scholar 

  • Underhill, L. G., & Peisach, M. (1985) Correspondence analysis and its application in multielemental analysis. Journal of Trace and Microprobe Techniques, 3, 41–65.

    CAS  Google Scholar 

  • Velilla, S. (1993) A note on the multivariate Box-Cox transformation to normality. Statististics & Probability Letters, 17, 259–263.DOI: 10.1016/0167-7152(93)90200-3.

    Article  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002) Modern applied statistics with S. New York, NY, USA: Springer.

    Book  Google Scholar 

  • Williams Thorpe, O., Warren, S. E., & Nandris, J. G. (1984) The distribution and provenance of archaeological obsidian in central and eastern Europe. Journal of Archaeological Science, 11, 183–212.DOI: 10.1016/0305-4403(84)90001-3.

    Article  Google Scholar 

  • Wu, B., & Becker, J. S. (2012) Bioimaging of metals in rat brain hippocampus by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS) using high-efficiency laser ablation chambers. International Journal of Mass Spectrometry, 323–324, 34–40.DOI: 10.1016/j.ijms.2012.06.012.

    Article  Google Scholar 

  • Zeman, A., & Navrátil, O. (1987) Obsidian artifacts from the Neolithic locality Tešetice in Southern Moravia. In J. Konta (Ed.), Proceedings of the 2nd International Conference on Natural Glasses (pp. 177–181). Prague, Czech Republic: Charles University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Kanický.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prokeš, L., Vašinová Galiová, M., Hušková, S. et al. Laser microsampling and multivariate methods in provenance studies of obsidian artefacts. Chem. Pap. 69, 761–778 (2015). https://doi.org/10.1515/chempap-2015-0019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0019

Keywords

  • ICP-MS
  • laser beam sampling
  • principal component analysis d]correspondence analysis d]archaeological objects d]volcanic glasses