Skip to main content
Log in

Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of this work was to demonstrate that various types of nanostructures provide different gains in terms of sensitivity or detection limit albeit providing the same gain in terms of increased area. Commercial screen printed electrodes (SPEs) were functionalized with 100 µg of bismuth oxide nanoparticles (Bi2O3 NPs), 13.5 µg of gold nanoparticles (Au NPs), and 4.8 µg of multi-wall carbon nanotubes (MWCNTs) to sense hydrogen peroxide (H2O2). The amount of nanomaterials to deposit was calculated using specific surface area (SSA) in order to equalize the additional electroactive surface area. Cyclic voltammetry (CV) experiments revealed oxidation peaks of Bi2O3 NPs, Au NPs, and MWCNTs based electrodes at (790 ± 1) mV, (386 ± 1) mV, and (589 ± 1) mV, respectively, and sensitivities evaluated by chronoamperometry (CA) were (74 ± 12) µA mM−1 cm−2, (129 ± 15) ±A mM−1 cm−2, and (54 ± 2) ±A mM−1 cm−2, respectively. Electrodes functionalized with Au NPs showed better sensing performance and lower redox potential (oxidative peak position) compared with the other two types of nanostructured SPEs. Interestingly, the average size of the tested Au NPs was 4 nm, under the limit of 10 nm where the quantum effects are dominant. The limit of detection (LOD) was (11.1 ± 2.8) ±M, (8.0 ± 2.4) ±M, and (3.4 ± 0.1) ±M for Bi2O3 NPs, Au NPs, and for MWCNTs based electrodes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry, 100, 13226–13239. DOI: 10.1021/jp9535506.

    Article  CAS  Google Scholar 

  • Banks, C. E., Davies, T. J., Wildgoose, G. G., & Compton, R. G. (2005). Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are thereactivesites. Chemical Communications, 2005, 829–841. DOI: 10.1039/b413177k.

    Article  Google Scholar 

  • Boccaccini, A. R., Cho, J., Roether, J. A., Thomas, B. J. C., Minay, E. J., & Shaffer, M. S. P. (2006). Electrophoretic deposition of carbon nanotubes. Carbon, 44, 3149–3160. 10.1016/j.carbon.2006.06.021.

    Article  CAS  Google Scholar 

  • Boero, C., Carrara, S., Del Vecchio, G., Calzà, L., & De Micheli, G. (2011). Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture. IEEE Transactions on Nanobioscience, 10, 59–67. DOI: 10.1109/tnb.2011.2138157.

    Article  Google Scholar 

  • Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N., & Ralph, D. C. (2004). Metal-nanoparticle single-electron transistors fabricated using electromigration. Applied Physics Letters, 84, 3154–3156. DOI: 10.1063/1.1695203.

    Article  CAS  Google Scholar 

  • Bredol, M., & Kaczmarek, M. (2010). Potential of nano-ZnS as electrocatalyst. The Journal of Physical Chemistry A, 114, 3950–3955. DOI: 10.1021/jp907369f.

    Article  CAS  Google Scholar 

  • Cadek, M., Murphy, R., McCarthy, B., Drury, A., Lahr, B., Barklie, R. C., In het Panhuis, M., Coleman, J. N., & Blau, W. J. (2002). Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon, 40, 923–928. DOI: 10.1016/s0008-6223(01)00221-4.

    Article  CAS  Google Scholar 

  • Carrara, S., Shumyantseva, V.V., Archakov, A.I., & Samorì, B. (2008). Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosensors & Bioelectronics, 24, 148–150. DOI: 10.1016/j.bios.2008.03.008.

    Article  CAS  Google Scholar 

  • Carrara, S., Boero, C., & De Micheli, G. (2009). Quantum dots and wires to improve enzymes-based electrochemical bio-sensing. In A. Schmid, S. Goel, W. Wang, V. Beiu, & S. Carrara (Eds.), Nano-net: Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 20, pp. 189–199). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-04850-0_26.

    Chapter  Google Scholar 

  • Carrara, S., Baj-Rossi, C., Boero, C., & De Micheli, G. (2014). Do carbon nanotubes contribute to electrochemical biosensing? Electrochimica Acta, 128, 102–112. DOI: 10.1016/j.electacta.2013.12.123.

    Article  CAS  Google Scholar 

  • Ding, Y., Dong, Y., Bapat, A., Nowak, J.D., Carter, C.B., Kortshagen, U. R., & Campbell, S. A. (2006). Single nanoparticle semiconductor devices. IEEE Transactions on Electron Devices, 53, 2525–2531. DOI: 10.1109/ted.2006.882047.

    Article  CAS  Google Scholar 

  • Facci, P., Erokhin, V., Carrara, S., & Nicolini, C. (1996). Room-temperature single-electron junction. Proceedings of the National Academy of Sciences of the United States of America, 93, 10556–10559. DOI: 10.1073/pnas.93.20.10556.

    Article  CAS  Google Scholar 

  • Feil, W. A., Wessels, B. W., Tonge, L. M., & Marks, T. J. (1990). Organometallic chemical vapor deposition of strontium titanate. Journal of Applied Physics, 67, 3858–3861. DOI: 10.1063/1.345034.

    Article  CAS  Google Scholar 

  • Ge, M., Li, Y., Liu, L., Zhou, Z., & Chen, W. (2011). Bi2O3-Bi2WO6 composite microspheres: Hydrothermal synthesis and photocatalytic performances. The Journal of Physical Chemistry C, 115, 5220–5225. DOI: 10.1021/jp108414e.

    Article  CAS  Google Scholar 

  • German, N., Ramanavicius, A., Voronovic, J., & Ramanaviciene, A. (2012). Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 224–230. DOI: 10.1016/j.colsurfa.2012.02.012.

    Article  CAS  Google Scholar 

  • Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107, 4797–4862. DOI: 10.1021/cr0680282.

    Article  CAS  Google Scholar 

  • Guascito, M. R., Chirizzi, D., Picca, R. A., Mazzotta, E., & Malitesta, C. (2011). Ag nanoparticles capped by a non-toxic polymer: Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Materials Science and Engineering C, 31, 606–611. DOI: 10.1016/j.msec.2010.11.022.

    Article  CAS  Google Scholar 

  • Guo, F., He, J., Li, J., Wu, W., Hang, Y., & Hua, J. (2013). Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Journal of Colloid and Interface Science, 408, 59–65. DOI: 10.1016/j.jcis.2013.06.069.

    Article  CAS  Google Scholar 

  • Habibi, B., & Pournaghi-Azar, M. H. (2010). Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochimica Acta, 55, 5492–5498. DOI: 10.1016/j.electacta.2010.04.052.

    Article  CAS  Google Scholar 

  • Haruehanroengra, S., & Wang, W. (2007). Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Device Letters, 28, 756–759. DOI: 10.1109/led.2007.901584.

    Article  CAS  Google Scholar 

  • Hernández-Santos, D., González-García, M. B., & García, A. C. (2002). Metal-nanoparticles based electroanalysis. Electroanalysis, 14, 1225–1235. DOI: 10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z.

    Article  Google Scholar 

  • Hu, G., Ma, Y., Guo, Y., & Shao, S. (2008). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610–6615. DOI: 10.1016/j.electacta.2008.04.054.

    Article  CAS  Google Scholar 

  • Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2, 681–693. DOI: 10.2217/17435889.2.5.681.

    Article  CAS  Google Scholar 

  • Hubbard, A. T. (1969). Study of the kinetics of electrochemical reactions by thin-layer voltammetry: I. theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 22, 165–174. DOI: 10.1016/s0022-0728(69)80247-0.

    Article  CAS  Google Scholar 

  • Jiang, L., You, T., & Deng, W. Q. (2013). Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode. Nanotechnology, 24, 415401. DOI: 10.1088/0957-4484/24/41/415401.

    Article  Google Scholar 

  • Journet, C., & Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67, 1–9. DOI: 10.1007/s003390050731.

    Article  CAS  Google Scholar 

  • Junno, T., Carlsson, S. B., Xu, H., Montelius, L., & Samuelson, L. (1998). Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope. Applied Physics Letters, 72, 548–550. DOI: 10.1063/1.120754.

    Article  CAS  Google Scholar 

  • Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S. (2013). Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annual Review of Analytical Chemistry, 6, 143–162. DOI: 10.1146/annurev-anchem-060908-155136.

    Article  CAS  Google Scholar 

  • Kharissova, O. V., Osorio, M., Kharisov, B. I., Yacamán, M. J., & Méndez, U. O. (2010). A comparison of bismuth nanoforms obtained in vacuum and air by microwave heating of bismuth powder. Materials Chemistry and Physics, 121, 489–496. DOI: 10.1016/j.matchemphys.2010.02.013.

    Article  CAS  Google Scholar 

  • Li, N. B., Park, J.H., Park, K., Kwon, S.J., Shin, H.,& Kwak, J. (2008). Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosensors & Bioelectronics, 23, 1519–1526. DOI: 10.1016/j.bios.2008.01.009.

    Article  CAS  Google Scholar 

  • Lin, J. Y., Liao, J. H., & Hung, T. Y. (2011). A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochemistry Communications, 13, 977–980. DOI: 10.1016/j.elecom.2011.06.016.

    Article  CAS  Google Scholar 

  • Liu, G., & Lin, Y. (2005). A renewable electrochemical magnetic immunosensor based on gold nanoparticle labels. Journal of Nanoscience and Nanotechnology, 5, 1060–1065. DOI: 10.1166/jnn.2005.178.

    Article  CAS  Google Scholar 

  • Liu, B., Wang, Z., Dong, Y., Zhu, Y., Gong, Y., Ran, S., Liu, Z., Xu, J., Xie, Z., Chen, D., & Shen, G. (2012). ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 22, 9379–9384. DOI: 10.1039/c2jm16781f.

    Article  CAS  Google Scholar 

  • Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall.

    Google Scholar 

  • Mocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure and Applied Chemistry, 69, 297–328. DOI: 10.1351/pac199769020297.

    Article  CAS  Google Scholar 

  • Nie, Z., Petukhova, A., & Kumacheva, E. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5, 15–25. DOI: 10.1038/nnano.2009.453.

    Article  CAS  Google Scholar 

  • Nihei, M., Kondo, D., Kawabata, A., Sato, S., Shioya, H., Sakaue, M., Iwai, T., Ohfuti, M., & Awano, Y. (2005). Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. Proceedings of the IEEE 2005 International Interconnect Technology Conference, June 6–8, 2005 (pp. 234–236). Burlingame, CA, USA: IEEE Xplore. DOI: 10.1109/iitc.2005.1499995.

    Google Scholar 

  • Paddeu, S., Ram, M. K., Carrara, S., & Nicolini, C. (1998). Langmuir-Schaefer films of a poly(o-anisidine) conducting polymer for sensors and displays. Nanotechnology, 9, 228–236. DOI: 10.1088/0957-4484/9/3/014.

    Article  CAS  Google Scholar 

  • Paradise, M., & Goswami, T. (2007). Carbon nanotubes — Production and industrial applications. Materials & Design, 28, 1477–1489. DOI: 10.1016/j.matdes.2006.03.008.

    Article  CAS  Google Scholar 

  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 507–514. DOI: 10.1016/s0008-6223(00)00155-x.

    Article  CAS  Google Scholar 

  • Periasamy, A. P., Yang, S., & Chen, S. M. (2011). Preparation and characterization of bismuth oxide nanoparticles-multiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta, 87, 15–23. DOI: 10.1016/j.talanta.2011.09.021.

    Article  CAS  Google Scholar 

  • Pingarrón, J. M., Yáñez-Sedeño, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53, 5848–5866. DOI: 10.1016/j.electacta.2008.03.005.

    Article  Google Scholar 

  • Prabhuram, J., Zhao, T. S., Tang, Z. K., Chen, R., & Liang, Z. X. (2006). Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. The Journal of Physical Chemistry B, 110, 5245–5252. DOI: 10.1021/jp0567063.

    Article  CAS  Google Scholar 

  • Pumera, M., Sánchez, S., Ichinose, I., & Tang, J. (2007). Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 123, 1195–1205. DOI: 10.1016/j.snb.2006.11.016.

    Article  CAS  Google Scholar 

  • Roschier, L., Penttilä, J., Martin, M., Hakonen, P., Paalanen, M., Tapper, U., Kauppinen, E. I., Journet, C., & Bernier, P. (1999). Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Applied Physics Letters, 75, 728–730. DOI: 10.1063/1.124495.

    Article  CAS  Google Scholar 

  • Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562. DOI: 10.1021/cr030067f.

    Article  CAS  Google Scholar 

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43, 1731–1742. DOI: 10.1016/j.carbon.2005.02.018.

    Article  CAS  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to Image J: 25 years of image analysis. Nature Methods, 9, 671–675. DOI: 10.1038/nmeth.2089.

    Article  CAS  Google Scholar 

  • Shipway, A. N., & Willner, I. (2001). Nanoparticles as structural and functional units in surface-confined architectures. Chemical Communications, 2001, 2035–2045. DOI: 10.1039/b105164b.

    Article  Google Scholar 

  • Shumyantseva, V. V., Carrara, S., Bavastrello, V., Riley, D. J., Bulko, T. V., Skryabin, K. G., Archakov, A. I., & Nicolini, C. (2005). Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes. Biosensors & Bioelectronics, 21, 217–222. DOI: 10.1016/j.bios.2004.10.008.

    Article  CAS  Google Scholar 

  • Singh, C., Shaffer, M. S. P., & Windle, A. H. (2003). Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 41, 359–368. DOI: 10.1016/s0008-6223(02)00314-7.

    Article  CAS  Google Scholar 

  • Sorgenfrei, S., Chiu, C. Y., Gonzalez, R. L., Jr., Yu, Y. J., Kim, P., Nuckolls, C., & Shepard, K. L. (2011). Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology, 6, 126–132. DOI: 10.1038/nnano.2010.275.

    Article  CAS  Google Scholar 

  • Streeter, I., Wildgoose, G. G., Shao, L., & Compton, R. G. (2008). Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sensors and Actuators B: Chemical, 133, 462–466. DOI: 10.1016/j.snb.2008.03.015.

    Article  CAS  Google Scholar 

  • Sun, S. (2006). Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials, 18, 393–403. DOI: 10.1002/adma.200501464.

    Article  CAS  Google Scholar 

  • Taufik, S., Yusof, N. A., Tee, T. W., & Ramli, I. (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. International Journal of Electrochemical Science, 6, 1880–1891.

    CAS  Google Scholar 

  • Taurino, I., Magrez, A., Matteini, F., Forró, L., De Micheli, G., & Carrara, S. (2013). Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes. Nanoscale, 5, 12448–12455. DOI: 10.1039/c3nr03283c.

    Article  CAS  Google Scholar 

  • Tian, Y., & Tatsuma, T. (2005). Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 127, 7632–7637. DOI: 10.1021/ja042192u.

    Article  CAS  Google Scholar 

  • Trindade, T., O’Brien, P., & Pickett, N. L. (2001). Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chemistry of Materials, 13, 3843–3858. DOI: 10.1021/cm000843p.

    Article  CAS  Google Scholar 

  • Wang, F., & Hu, S. (2009). Electrochemical sensors based on metal and semiconductor nanoparticles. Microchimica Acta, 165, 1–22. DOI: 10.1007/s00604-009-0136-4.

    Article  CAS  Google Scholar 

  • Wang, Q., & Zheng, J. (2010). Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchimica Acta, 169, 361–365. DOI: 10.1007/s00604-010-0356-7.

    Article  CAS  Google Scholar 

  • Willner, I., & Willner, B. (2001). Molecular and biomolecular optoelectronics. Pure and Applied Chemistry, 73, 535–542.

    Article  CAS  Google Scholar 

  • Willner, I., Baron, R., & Willner, B. (2007). Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors & Bioelectronics, 22, 1841–1852. DOI: 10.1016/j.bios.2006.09.018.

    Article  CAS  Google Scholar 

  • Woo, S., Kim, Y. R., Chung, T. D., Piao, Y., & Kim, H. (2012). Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 59, 509–514. DOI: 10.1016/j.electacta.2011.11.012.

    Article  CAS  Google Scholar 

  • Yang, G., Yuan, R., & Chai, Y. Q. (2008). A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids and Surfaces B: Biointerfaces, 61, 93–100. DOI: 10.1016/j.colsurfb.2007.07.014.

    Article  CAS  Google Scholar 

  • Yin, H., Ai, S., Shi, W., & Zhu, L. (2009). A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors and Actuators B: Chemical, 137, 747–753. DOI: 10.1016/j.snb.2008.12.046.

    Article  CAS  Google Scholar 

  • Yin, G., Xing, L., Ma, X. J., & Wan, J. (2014). Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles. Chemical Papers, 68, 435–441. DOI: 10.2478/s11696-013-0473-y.

    Article  CAS  Google Scholar 

  • Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Advanced Functional Materials, 20, 561–572. DOI: 10.1002/adfm.200901884.

    Article  CAS  Google Scholar 

  • Zhang, J. Z. (1997). Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Accounts of Chemical Research, 30, 423–429. DOI: 10.1021/ar960178j.

    Article  CAS  Google Scholar 

  • Zhang, H., Wu, P., Li, Y., Liao, L., Fang, Z., & Zhong, X. (2010). Preparation of bismuth oxide quantum dots and their photo-catalytic activity in a homogeneous system. ChemCatChem, 2, 1115–1121. DOI: 10.1002/cctc.201000090.

    Article  CAS  Google Scholar 

  • Zhao, Y., Zhang, Z., & Dang, H. (2004). A simple way to prepare bismuth nanoparticles. Materials Letters, 58, 790–793. DOI: 10.1016/j.matlet.2003.07.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Aliakbarinodehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliakbarinodehi, N., Taurino, I., Pravin, J. et al. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles. Chem. Pap. 69, 134–142 (2015). https://doi.org/10.1515/chempap-2015-0004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0004

Keywords

Navigation