Skip to main content
Log in

Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A method was developed for the fabrication of microfluidic paper-based analytical devices (μPAD). This method was based on the silanisation of cellulose in filter paper using alkyltrimethoxysilane coupled with UV radiation. The filter paper sheet was hydrophobised by immersion in an octadecyltrimethoxysilane/heptane (OTMS/heptane) solution (0.25 vol. %) containing 5 vol. % of ethyl acetate (EtOAc). The hydrophobic-hydrophilic contrast was generated on the filter paper after the hydrophobised paper sheet was exposed to UV light with a metal mask creating the desired pattern on the sheet. The exposed area was oxidised to create a hydrophilic area, while the hydrophobic area was protected by the metal mask. The optimal conditions for the fabrication of μPAD were studied; these included ethyl acetate concentration (CEtOAc), immersion time, octadecyltrimethoxysilane concentration (COTMS) and exposure time. This method is cost-effective and simple. In addition, different functional groups could be further grafted for various assay purposes. To demonstrate the feasibility of the μPAD in analytical applications, a flower-shaped μPAD with eight channels and eight detection units was fabricated and used to determine the nitrite content in pickled vegetables. The nitrite content (124 µg g−1) in the sample determined by this method compared favourably with that measured using a standard method (137 µg g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K., Suzuki, K., & Citterio, D. (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical Chemistry, 80, 6928–6934. DOI: 10.1021/ac800604v.

    Article  CAS  Google Scholar 

  • Abe, K., Kotera, K., Suzuki, K., & Citterio, D. (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Analytical and Bioanalytical Chemistry, 398, 885–893. DOI: 10.1007/s00216-010-4011-2.

    Article  CAS  Google Scholar 

  • Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Analytical Chemistry, 80, 3387–3392. DOI: 10.1021/ac702605a.

    Article  CAS  Google Scholar 

  • Cai, L., Wu, Y., Xu, C., & Chen, Z. (2013) A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract. Journal of Chemical Education, 90, 232–234. DOI: 10.1021/ed300385j.

    Article  CAS  Google Scholar 

  • Dungchai, W., Chailapakul, O., & Henry, C. S. (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Analytica Chimica Acta, 674, 227–233. DOI: 10.1016/j.aca.2010.06.019.

    Article  CAS  Google Scholar 

  • El Kadib, A., Chimenton, R., Sachse, A., Fajula, F., Galarneau, A., & Coq, B. (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angewandte Chemie International Edition, 48, 4969–4972. DOI: 10.1002/anie.200805580.

    Article  Google Scholar 

  • He, Q., Ma, C., Hu, X., & Chen, H. (2013) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Analytical Chemistry, 85, 1327–1331. DOI: 10.1021/ac303138x.

    Article  CAS  Google Scholar 

  • Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D., & Henry, C. S. (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Analytical Chemistry, 84, 2900–2907. DOI: 10.1021/ac203466y.

    Article  CAS  Google Scholar 

  • Koga, H., Kitaoka, T., & Isogai, A. (2011) In situ modification of cellulose paper with amino groups for catalytic applications. Journal of Materials Chemistry, 21, 9356–9361. DOI: 10.1039/c1jm10543d.

    Article  CAS  Google Scholar 

  • Li, X., Tian, J., Nguyen, T., & Shen, W. (2008) Paper-based microfluidic devices by plasma treatment. Analytical Chemistry, 80, 9131–9134. DOI: 10.1021/ac801729t.

    Article  CAS  Google Scholar 

  • Li, X., Tian, J., Garnier, G., & Shen, W. (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces, 76, 564–570. DOI: 10.1016/j.colsurfb.2009.12.023.

    Article  CAS  Google Scholar 

  • Liu, P., Li, X., Greenspoon, S. A., Scherer, J. R., & Mathies, R. A. (2011) Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab on a Chip, 11, 1041–1048. DOI: 10.1039/c0lc00533a.

    Article  CAS  Google Scholar 

  • Lu, Y., Shi, W., Jiang, L., Qin, J., & Lin, B. (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30, 1497–1500. DOI: 10.1002/elps.200800563.

    Article  CAS  Google Scholar 

  • Maejima, K., Tomikawa, S., Suzuki, K., & Citterio, D. (2013) Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Advances, 3, 9258–9263. DOI: 10.1039/c3ra40828k.

    Article  CAS  Google Scholar 

  • Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie International Edition, 46, 1318–1320. DOI: 10.1002/anie.200603817.

    Article  CAS  Google Scholar 

  • Mentele, M. M., Cunningham, J., Koehler, K., Volckens, J., & Henry, C. S. (2012) Microfluidic paper-based analytical device for particulate metals. Analytical Chemistry, 84, 4474–4480. DOI: 10.1021/ac300309c.

    Article  CAS  Google Scholar 

  • Noh, H., & Phillips, S. T. (2010) Fluidic timers for time-dependent, point-of-care assays on paper. Analytical Chemistry, 82, 8071–8078. DOI: 10.1021/ac1005537.

    Article  CAS  Google Scholar 

  • Nurak, T., Praphairaksit, N., & Chailapakul, O. (2013) Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta, 114, 291–296. DOI: 10.1016/j.talanta.2013.05.037.

    Article  CAS  Google Scholar 

  • Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Koehler, K., Chailapakul, O., Henry, C. S., & Volckens, J. (2013) Microfluidic paper-based analytical device for aerosol oxidative activity. Environmental Science & Technology, 47, 932–940. DOI: 10.1021/es304662w.

    Article  CAS  Google Scholar 

  • Tian, L., Morrissey, J. J., Kattumenu, R., Gandra, N., Kharasch, E. D., & Singamaneni, S. (2012) Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Analytical Chemistry, 84, 9928–9934. DOI: 10.1021/ac302332g.

    Article  CAS  Google Scholar 

  • Wu, Y., Bekke, M., Inoue, Y., Sugimura, H., Kitaguchi, H., Liu, C., & Takai, O. (2004) Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD. Thin Solid Films, 457, 122–127. DOI: 10.1016/j.tsf.2003.12.007.

    Article  CAS  Google Scholar 

  • Wu, Y., Saito, N., Nae, F. A., Inoue, Y., & Takai, O. (2006) Water droplets interaction with super-hydrophobic surfaces. Surface Science, 600, 3710–3714. DOI: 10.1016/j.susc.2006.01.073.

    Article  CAS  Google Scholar 

  • Wu, Y. Y., Kouno, M., Saito, N., Nae, F. A., Inoue, Y., & Takai, O. (2007) Patterned hydrophobic-hydrophilic templates made from microwave-plasma enhanced chemical vapor deposited thin films. Thin Solid Films, 515, 4203–4208. DOI: 10.1016/j.tsf.2006.02.065.

    Article  CAS  Google Scholar 

  • Yu, J., Ge, L., Huang, J., Wang, S., & Ge, S. (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab on a Chip, 11, 1286–1291. DOI: 10.1039/c0lc00524j.

    Article  CAS  Google Scholar 

  • Zhang, Y. L. (2006) Food detection textbook. Beijing, China: Chemical Industrial Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Fei Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, LF., Zhong, MH., Chen, WY. et al. Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation. Chem. Pap. 69, 262–268 (2015). https://doi.org/10.1515/chempap-2015-0002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0002

Keywords

Navigation