Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation

Abstract

A method was developed for the fabrication of microfluidic paper-based analytical devices (μPAD). This method was based on the silanisation of cellulose in filter paper using alkyltrimethoxysilane coupled with UV radiation. The filter paper sheet was hydrophobised by immersion in an octadecyltrimethoxysilane/heptane (OTMS/heptane) solution (0.25 vol. %) containing 5 vol. % of ethyl acetate (EtOAc). The hydrophobic-hydrophilic contrast was generated on the filter paper after the hydrophobised paper sheet was exposed to UV light with a metal mask creating the desired pattern on the sheet. The exposed area was oxidised to create a hydrophilic area, while the hydrophobic area was protected by the metal mask. The optimal conditions for the fabrication of μPAD were studied; these included ethyl acetate concentration (CEtOAc), immersion time, octadecyltrimethoxysilane concentration (COTMS) and exposure time. This method is cost-effective and simple. In addition, different functional groups could be further grafted for various assay purposes. To demonstrate the feasibility of the μPAD in analytical applications, a flower-shaped μPAD with eight channels and eight detection units was fabricated and used to determine the nitrite content in pickled vegetables. The nitrite content (124 µg g−1) in the sample determined by this method compared favourably with that measured using a standard method (137 µg g−1).

This is a preview of subscription content, access via your institution.

References

  1. Abe, K., Suzuki, K., & Citterio, D. (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical Chemistry, 80, 6928–6934. DOI: 10.1021/ac800604v.

    CAS  Article  Google Scholar 

  2. Abe, K., Kotera, K., Suzuki, K., & Citterio, D. (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Analytical and Bioanalytical Chemistry, 398, 885–893. DOI: 10.1007/s00216-010-4011-2.

    CAS  Article  Google Scholar 

  3. Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Analytical Chemistry, 80, 3387–3392. DOI: 10.1021/ac702605a.

    CAS  Article  Google Scholar 

  4. Cai, L., Wu, Y., Xu, C., & Chen, Z. (2013) A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract. Journal of Chemical Education, 90, 232–234. DOI: 10.1021/ed300385j.

    CAS  Article  Google Scholar 

  5. Dungchai, W., Chailapakul, O., & Henry, C. S. (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Analytica Chimica Acta, 674, 227–233. DOI: 10.1016/j.aca.2010.06.019.

    CAS  Article  Google Scholar 

  6. El Kadib, A., Chimenton, R., Sachse, A., Fajula, F., Galarneau, A., & Coq, B. (2009) Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angewandte Chemie International Edition, 48, 4969–4972. DOI: 10.1002/anie.200805580.

    Article  Google Scholar 

  7. He, Q., Ma, C., Hu, X., & Chen, H. (2013) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Analytical Chemistry, 85, 1327–1331. DOI: 10.1021/ac303138x.

    CAS  Article  Google Scholar 

  8. Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D., & Henry, C. S. (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Analytical Chemistry, 84, 2900–2907. DOI: 10.1021/ac203466y.

    CAS  Article  Google Scholar 

  9. Koga, H., Kitaoka, T., & Isogai, A. (2011) In situ modification of cellulose paper with amino groups for catalytic applications. Journal of Materials Chemistry, 21, 9356–9361. DOI: 10.1039/c1jm10543d.

    CAS  Article  Google Scholar 

  10. Li, X., Tian, J., Nguyen, T., & Shen, W. (2008) Paper-based microfluidic devices by plasma treatment. Analytical Chemistry, 80, 9131–9134. DOI: 10.1021/ac801729t.

    CAS  Article  Google Scholar 

  11. Li, X., Tian, J., Garnier, G., & Shen, W. (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces, 76, 564–570. DOI: 10.1016/j.colsurfb.2009.12.023.

    CAS  Article  Google Scholar 

  12. Liu, P., Li, X., Greenspoon, S. A., Scherer, J. R., & Mathies, R. A. (2011) Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab on a Chip, 11, 1041–1048. DOI: 10.1039/c0lc00533a.

    CAS  Article  Google Scholar 

  13. Lu, Y., Shi, W., Jiang, L., Qin, J., & Lin, B. (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30, 1497–1500. DOI: 10.1002/elps.200800563.

    CAS  Article  Google Scholar 

  14. Maejima, K., Tomikawa, S., Suzuki, K., & Citterio, D. (2013) Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Advances, 3, 9258–9263. DOI: 10.1039/c3ra40828k.

    CAS  Article  Google Scholar 

  15. Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie International Edition, 46, 1318–1320. DOI: 10.1002/anie.200603817.

    CAS  Article  Google Scholar 

  16. Mentele, M. M., Cunningham, J., Koehler, K., Volckens, J., & Henry, C. S. (2012) Microfluidic paper-based analytical device for particulate metals. Analytical Chemistry, 84, 4474–4480. DOI: 10.1021/ac300309c.

    CAS  Article  Google Scholar 

  17. Noh, H., & Phillips, S. T. (2010) Fluidic timers for time-dependent, point-of-care assays on paper. Analytical Chemistry, 82, 8071–8078. DOI: 10.1021/ac1005537.

    CAS  Article  Google Scholar 

  18. Nurak, T., Praphairaksit, N., & Chailapakul, O. (2013) Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta, 114, 291–296. DOI: 10.1016/j.talanta.2013.05.037.

    CAS  Article  Google Scholar 

  19. Sameenoi, Y., Panymeesamer, P., Supalakorn, N., Koehler, K., Chailapakul, O., Henry, C. S., & Volckens, J. (2013) Microfluidic paper-based analytical device for aerosol oxidative activity. Environmental Science & Technology, 47, 932–940. DOI: 10.1021/es304662w.

    CAS  Article  Google Scholar 

  20. Tian, L., Morrissey, J. J., Kattumenu, R., Gandra, N., Kharasch, E. D., & Singamaneni, S. (2012) Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Analytical Chemistry, 84, 9928–9934. DOI: 10.1021/ac302332g.

    CAS  Article  Google Scholar 

  21. Wu, Y., Bekke, M., Inoue, Y., Sugimura, H., Kitaguchi, H., Liu, C., & Takai, O. (2004) Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD. Thin Solid Films, 457, 122–127. DOI: 10.1016/j.tsf.2003.12.007.

    CAS  Article  Google Scholar 

  22. Wu, Y., Saito, N., Nae, F. A., Inoue, Y., & Takai, O. (2006) Water droplets interaction with super-hydrophobic surfaces. Surface Science, 600, 3710–3714. DOI: 10.1016/j.susc.2006.01.073.

    CAS  Article  Google Scholar 

  23. Wu, Y. Y., Kouno, M., Saito, N., Nae, F. A., Inoue, Y., & Takai, O. (2007) Patterned hydrophobic-hydrophilic templates made from microwave-plasma enhanced chemical vapor deposited thin films. Thin Solid Films, 515, 4203–4208. DOI: 10.1016/j.tsf.2006.02.065.

    CAS  Article  Google Scholar 

  24. Yu, J., Ge, L., Huang, J., Wang, S., & Ge, S. (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab on a Chip, 11, 1286–1291. DOI: 10.1039/c0lc00524j.

    CAS  Article  Google Scholar 

  25. Zhang, Y. L. (2006) Food detection textbook. Beijing, China: Chemical Industrial Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Long-Fei Cai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, LF., Zhong, MH., Chen, WY. et al. Fabrication of paper-based analytical device by silanisation of filter cellulose using alkyltrimethoxysilane coupled with UV radiation. Chem. Pap. 69, 262–268 (2015). https://doi.org/10.1515/chempap-2015-0002

Download citation

Keywords

  • μPAD
  • fabrication
  • UV radiation
  • nitrite assay