Skip to main content

Advertisement

Log in

Effects of roads and adjacent areas on diversity of terrestrial isopods of Hungarian highway verges

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Transportation infrastructure may be the most important driver of social and economic development, but it is a major cause of environmental change in landscapes. The main objective of this paper is to report road edge effects on isopods of Hungarian highway verges. We examined the isopod diversity along five highways (M0, M1, M3, M5, M7) while accounting for road edge proximity and the adjacent areas. Double-glass pitfall traps were set in a total of 15 sites and at three distances from the edge of the roads next to different types of adjacent areas. We found differences between ecological parameters of isopod communities in relation to adjacent areas as well as to road edge proximity. The highest diversity was observed near urban areas, while the lowest was near the arable fields. Isopod diversity increased with decreasing distance from a road. Species diversity of different types of verges based on adjacent areas varied strongly in relation to road edge proximity. A medium distance (40 m) from roads had a positive effect on species richness, while verges next to arable fields were the most species-rich habitats. The general conclusion of this study is that highway verges provided suitable environment conditions for generalist isopod species but may be a limiting factor for specialist isopods. Moreover, highway verges function as corridors for isopods. The proximity of roads and urban areas positively affected isopods, and verges close to roads and urban areas are considered as an attractive environment for isopods in heterogeneous roadside verges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaruikka D.M., Kotze D.J., Matveinen K. & Niemelä J. 2002. Carabid and spider assemblages along an urban to rural gradient in Southern Finland. J. Insect Conserv. 6: 195–206. DOI: https://doi.org/10.1023/A:1024432830064

    Article  Google Scholar 

  • Allik M. 2014. Exploring urban habitats. The case of Frihamnen. Sweden. Master’s Thesis at Chalmers Architecture. Master Programme Design for Sustainable Development, 101 pp.

    Google Scholar 

  • Andrews A. 1990. Fragmentation of habitat by roads and utility corridors: A review. Aust. Zool. 26 (3–4): 130–141. DOI: https://doi.org/10.7882/AZ.1990.005

    Article  Google Scholar 

  • Bennett A.F. 1991. Roads, roadsides and wildlife conservation: a review, pp. 99–118. In: Saunders D.A. & Hobbs R.J. (eds), Nature Conservation 2: The Role of Corridors, Surrey Beatty, Chipping Norton, Australia, 442 pp. ISBN: 094-9-324-353

    Google Scholar 

  • Berg M.P. & Wijnhoven H. 1998. Landpissebedden. Een tabel voor de landpissebedden (Crustacea; Oniscidae) van Neder-land en België. Wetenschappelijke Mededelingen KNNV 221: 1–80. ISBN: 9050111033

    Google Scholar 

  • Bissonette J.A. 2002. Scaling roads and wildlife: the Cinderella principle. Z. Jagdwiss. 48 (Suppl. 1): 208–214. DOI: https://doi.org/10.1007/BF02192410

    Google Scholar 

  • Bolger D.T., Suarez A.V., Crooks K.R., Morrison S.A. & Case T.J. 2000. Arthropods in urban habitat fragments in southern California: area, age and edge effects. Ecol. Appl. 10 (4): 1230–1248. DOI: https://doi.org/10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2

    Article  Google Scholar 

  • Brisson J., de Blois S. & Lavoie C. 2010. Roadside as invasion pathway for common reed (Phragmites australis). Invasive Plant Sci. Manag. 3 (4): 506–514. DOI: https://doi.org/10.1614/IPSM-09-050.1

    Article  Google Scholar 

  • Charles H. & Dukes J.S. 2007. Impacts of invasive species on ecosystem services, pp. 217–237. DOI: https://doi.org/10.1007/978-3-540-36920-2.13. In: Nentwig W. (ed.), Biological Invasions. Ecological Studies (Analysis and Synthesis), Vol. 193, Springer-Verlag, Berlin, 446 pp. ISBN: 978-3-540-77375-7

    Google Scholar 

  • Daigle P. 2010. A summary of the environmental impacts of roads, management responses, and research gaps: A literature review. BC J. Ecosyst. Manage. 10 (3): 65–89.

    Google Scholar 

  • Dallinger R., Berger B. & Birkel S. 1992. Terrestrial isopods: useful bioindicators of urban metal pollution. Oecologia 89 (1): 32–41. DOI: https://doi.org/10.1007/BF00319012.

    Article  PubMed  Google Scholar 

  • Delgado J.D., Arroyo N.L., Arévalo J.R. & Fernández-Palacios J.M. 2013a. The responses of leaf litter invertebrates to environmental gradients along road edges in subtropical island forests. Pedobiology 56 (3): 137–146. DOI: https://doi.org/10.1016/j.pedobi.2013.01.003

    Article  Google Scholar 

  • Delgado J.D., Arroyo N.L., Arévalo J.R. & Fernández-Palacios J.M. 2013b. Road edge effects on litter invertebrate communities of subtropical forests. J. Nat. Hist. 47 (3–4): 203–236. DOI: https://doi.org/10.1080/00222933.2012.743610

    Google Scholar 

  • Farkas S. & Vilisics F. 2013. Magyarország szárazfoldi ászkarák faunájának határozója (Isopoda: Oniscidea) [A Key to the Terrestrial Isopods of Hungary]. Nat. Somogy. 23: 89–124.

    Google Scholar 

  • Forman R.T. & Alexander L.E. 1998. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29: 207–231. DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.207

    Article  Google Scholar 

  • Forman R.T.T., Sperling D., Bisonete J.A. & Clevenger A.P. (eds). 2002. Road Ecology: Science and Solutions. 2nd ed. Island Press Washington, Covelo, London, 504 pp. ISBN: 1559639334, 9781559639330

    Google Scholar 

  • Hammer O., Harper D.A.T. & Ryan P.D. 2001. PAST: Paleon-tological Statistics software packege for education and data analysis. Palaeontol. Electron. 4 (1), 9 pp.

    Google Scholar 

  • Hassall M., Turner J.G. & Rands M.R.W. 1987. Effects of terrestrial isopods on the decomposition on woodland leaf litter. Oecologia 72 (4): 597–604. DOI: https://doi.org/10.1007/BF00378988

    Article  CAS  PubMed  Google Scholar 

  • Hawbaker T.J., Radeloff V.C., Gonzalez-Abraham C.E., Hammer R.B. & Clayton M.K. 2006. Changes in the road network, relationships with housing development, and the effects on landscape pattern in northern Wisconsin: 1937 to 1999. Ecol. Appl. 16 (3): 1222–1237. DOI: https://doi.org/10.1890/1051-0761(2006)016[1222:RDHGAL]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Henle K., Davies K.F., Kleyer M., Margules C. & Settele J. 2004. Predictors of species sensitivity to fragmenttion. Biodivers. Conserv. 13: 207–215. DOI: https://doi.org/10.1023/B:BIOC.0000004319.91643.9e

    Article  Google Scholar 

  • Hill T.C.J., Walsh K.A., Harris J.A. & Moffett B.F. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43 (1): 1–11. DOI: https://doi.org/10.1111/j.1574-6941.2003.tb01040.x.

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R. & Di Giulio M. 2010. The genetic effects of roads: a review of empirical evidence. Basic. Appl. Ecol. 11 (6): 522–531. DOI: https://doi.org/10.1016/j.baae.2010.06.006

    Article  Google Scholar 

  • Hopkin S.P. (ed.). 1991. A Key to the Woodlice of Britain and Ireland. AIDGAP, Field Studies Council Publication No. 204, 52 pp. ISBN-10: 1851532048, ISBN-13: 978-1851532049

    Google Scholar 

  • Hornung E., Vilisics F. & Sólymos P. 2009. Ászkarák együttesek (Crustacea, Isopoda, Oniscidea) felhasználhatósága élőhelyek minősítésében [The use of woodlice assemblages (Crustacea, Isopoda, Oniscidea) in the assessment of habitat naturalness]. Természetvédelmi Kozlemények 15: 381–395.

    Google Scholar 

  • Hornung E., Vilisics F. & Szlávecz K. 2007. Hazai szárazföldi ászkarák fajok (Isopoda, Oniscidea) tipizálása két nagyváros, Budapest és Baltimore (EK Amerika) osszehasonlításának példájával [Standardization of Hungarian terrestrial isopods comparing two big cities, Budapest and Baltimore (ÉK Amerika)]. Természetvédelmi Közlemények 13: 47–58.

    Google Scholar 

  • Horvát R. 2012. Az urbanizáció hatása erdei talajlakó pókokra [Effect of urbanization on ground-dwelling spiders]. Természetvédelmi Közlemények 18: 224–233.

    Google Scholar 

  • Jedryczkowsky W. 1981. Isopods (Isopoda) of Warsaw and Mazovia [Równonogi (Isopoda) Warszawy i Mazowsza]. Memorabilia Zool. 34: 79–86.

    Google Scholar 

  • Knapp M., Saska P., Knappová J., Vonička P., Moravec P., Kurka A. & Andel P. 2013. The habitat-specific effects of highway proximity on ground-dwelling arthropods: implications for biodiversity conservation. Biol. Conserv. 164: 22–29. DOI: https://doi.org/10.1016/j.biocon.2013.04.012

    Article  Google Scholar 

  • Korsós Z., Hornung E., Szlávecz K. & Kontschán J. 2002. Isopoda and Diplopoda of urban habitats: new data to the fauna of Budapest. Annls. Hist.-Nat. Mus. Natn. Hung. 94: 193–208.

    Google Scholar 

  • Kozár F. 2009. Pajzstetű (Hemiptera: Coocoidea) fajok és a klímaváltozás: Vizsgálatok magyarországi autópályákon [Scales species (Hemiptera, Coccoidea) and climate change studies in Hungarian highways]. Növényvédelem 45 (11): 577–588.

    Google Scholar 

  • Krauss J., Steffan-Dewenter I. & Tscharntke T. 2003. Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia 137 (4): 591–602. DOI: https://doi.org/10.1007/s00442-003-1353-x

    Article  PubMed  Google Scholar 

  • Lee P. 2006. Atlas of the Millipedes (Diplopoda) of Britain and Ireland. Pensoft Publisher, Sofia-Moscow, 216 pp. ISBN-10: 9546422770, ISBN-13: 978-9546422774

    Google Scholar 

  • Magurran A E. 2003. Measuring Biological Diversity. Blackwell Publishing, Oxford, 264 pp. ISBN: 978-0-632-05633-0

    Google Scholar 

  • Margalef R. 1958. Temporal succession and spatial heterogeneity in phytoplankton, pp. 323–347. In: Margalef R. (ed.), Perspectives in Marine Biology, Buzzati-Traverso Univ. Calif. Press, Berkeley, 621 pp.

    Google Scholar 

  • McIntyre N.E., Rango J., Fagan W.F. & Faeth S.H. 2001. Ground arthropod community structure in a heterogenous urban environment. Landsc. Urban Plan. 52 (4): 257–274. DOI: https://doi.org/10.1016/S0169-2046(00)00122-5

    Article  Google Scholar 

  • Nagendra H. 2002. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 22 (2): 175–186. DOI: https://doi.org/10.1016/S0143-6228(02)00002-4

    Article  Google Scholar 

  • Niemelä J., Kotze J.D., Venn S., Penev L., Stoyanov I., Spence J., Hartley D. & Montes de Oca E. 2002. Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: an international comparison. Landsc. Ecol. 17 (5): 387–401. DOI: https://doi.org/10.1023/A:1021270121630

    Article  Google Scholar 

  • Noordijk J., Prins D., de Jonge M. & Vermeulen R. 2006. Impact of a road on the movements of two ground beetle species (Coleoptera: Carabidae). Entomol. Fenn. 17: 276–283.

    Google Scholar 

  • Noordijk J., Schaffers A.P., Heijerman T. & Sykora K.V. 2011. Using movement and habitat corridors to improve the connectivity for heathland carabid beetles. J. Nat. Conserv. 19 (5): 276–284. DOI: https://doi.org/10.1016/j.jnc.2011.05.001

    Article  Google Scholar 

  • Noordijk J., Schaffers A.P. & Sykora K.V. 2008. Diversity of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) in roadside verges with grey hair-grass vegetation. Eur. J. En-tomol. 105 (2): 257–265. DOI: https://doi.org/10.14411/eje.2008.036

    Article  Google Scholar 

  • Paoletti M.G. & Hassall M. 1999. Woodlice (Isopoda, Onis-cidea): their potential for assessing sustainability and use as bioindicators. Agr. Ecosyst. Environ. 74 (1–3): 157–165. DOI: https://doi.org/10.1016/S0167-8809(99)00035-3

    Google Scholar 

  • Purtauf T., Roschewitz I., Dauber J., Thies C., Tscharntke T. & Wolters V. 2005. Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agr. Ecosyst. Environ. 108 (2): 165–174. DOI: https://doi.org/10.1016/j.agee.2005.01.005

    Article  Google Scholar 

  • Reijnen R., Foppen R. & Veenbaas G. 1997. Disturbance by traffic of breeding birds: evaluation of the effect and considerations in planning and mapping road corridors. Biodiv. Conserv. 6 (4): 567–581. DOI:https://doi.org/10.1023/A:1018385312751

    Article  Google Scholar 

  • Riedel P., Navrátil M., Tuf I.H. & Tufová J. 2009. Terrestrial isopods (Isopoda: Oniscidea) and millipedes (Diplopoda) of the City of Olomouc, pp. 125–132. In: Tajovský K., Schlaghamerský J. & Pižl V. (eds), Contributions to Soil Zoology in Central Europe III. Proceedings of the 9th Central European Workshop on Soil Zoology, České Budějovice, April 17–20, 2007, Institute of Soil Biology, Biology Centre, ASCR, v. v. i., České Budějovice, 191 pp. ISBN: 8086525139, 9788086525136

    Google Scholar 

  • Ries L., Debinski D.M. & Wieland M.L. 2001. Conservation value of roadside prairie restoration to butterfly communities. Conserv. Biol. 15 (2): 401–411. DOI: https://doi.org/10.1046/j.1523-1739.2001.015002401.x

    Article  Google Scholar 

  • Saunders S.C, Mislivets M.R., Chen J. & Cleland D.T. 2002. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103 (2): 209–225. DOI: https://doi.org/10.1016/S0006-3207(01)00130-6

    Article  Google Scholar 

  • Schmalfuss H. 2003. World Catalog of Terrestrial Isopods (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde, Serie A, Nr. 654, 341 pp.

    Google Scholar 

  • Schmera D. & Erős T. 2008. A mintavételi erőfeszítés hatása a mintareprezentativitásra [Effect of sampling effort ont he sample representativeness]. Acta Biol. Debrecina, Suppl. Oecol. Hung. 18: 209–213.

    Google Scholar 

  • Schmidt C. 1997. Revision of the European species of the genus Trachelipus Budde-Lund, 1908 (Crustacea: Isopoda: Oniscidea). Zool. J. Linn. Soc. Lond. 121 (2): 129–244. DOI: https://doi.org/10.1111/j.1096-3642.1997.tb00337.x

    Article  Google Scholar 

  • Schmidt C. 2008. Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthropod Syst. Phylogeny 66 (2): 191–226.

    Google Scholar 

  • Smigel J.T. & Gibbs A.G. 2008 Conglobation in the pill bug, Armadillidium vulgare, as a water conservation mechanism. J. Insect. Sci. 8: article 44. DOI: https://doi.org/10.1673/031.008.4401

    Article  PubMed  Google Scholar 

  • Spencer J.O. & Edney E.B. 1954. The absorption of water by woodlice. J. Exp. Biol. 31: 491–496.

    Google Scholar 

  • Tari T. 2010. Autópálya vadátjárók kialakítása és használatuk értékelése. [Evaluation of formation and usage of highway wildlife crossing]. Doktori szigorlat/Doctoral thesis, NYME Erdőmérnöki Kar,/University of Sopron, Faculty of Forestry, Sopron, 26 pp.

    Google Scholar 

  • Tikka P.M., Hogmander H. & Koski P.S. 2001. Road and railway verges serve as dispersal corridors for grassland plants. Landsc. Ecol. 16 (7): 659–666. DOI: https://doi.org/10.1023/A:1013120529382

    Article  Google Scholar 

  • Trombulak S.C. & Frissell C.A. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14 (1): 18–30. DOI: https://doi.org/10.1046/j.1523-1739.2000.99084.x

    Article  Google Scholar 

  • Vilisics F. & Hornung E. 2008. A budapesti szárazföldi ászkarákfauna (Isopoda: Oniscidea) kvalitatív osztályozása [Qualitative classification of the terrestrial isopod fauna (Isopoda: Oniscidea) of Budapest, Hungary. Állattani Közlemények 93 (2): 3–16.

    Google Scholar 

  • Vilisics F. & Hornung E. 2010. Újabb adatok Magyarország szárazföldi ászkarákfaunájához (Crustacea, Isopoda, Onis-cidea) [New data to the terrestrial isopod (Crustacea, Isopoda, Oniscidea) fauna of Hungary. Állattani Közlemények 95 (1): 87–120.

    Google Scholar 

  • Vona-Túri D., Szmatona-Túri T., Kádár F., Kiss B., Weiperth A. & Gál B. 2016. Ground-dwelling arthropod (Araneae, Coleoptera: Carabidae, Isopoda: Oniscidea) assemblages on Hungarian main road verges. Acta Universitatis Sapientiae, Agriculture and Environment 8 (1): 98–113. DOI: https://doi.org/10.1515/ausae-2016-0009

    Article  Google Scholar 

  • Vona-Túri D., Szmatona-Túri T. & Kiss B. 2013. Szárazföldi ászkarák együttesek (Crustacea: Isopoda: Oniscidea) a Magyarországi autópályák szegélyzónájába [Terrestrial isopods (Crustacea: Isopoda: Oniscidea) on Hungarian highway margins]. Természetvédelmi Közlemények 19: 106–116.

    Google Scholar 

  • Vona-Túri D., Szmatona-Túri T. & Kiss B. 2015. Autópá-lyák ászkarák-közösségeinek (Crustacea: Isopoda: Oniscidea) ökológiai vizsgálata [Ecologic evaluation and diversity changes of terrestrial isopod assemblages (Crustacea: Isopoda: Oniscidea) on Hungarian highway margins]. Természetvédelmi Közlemények 21: 395–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diána Vona-Túri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vona-Túri, D., Szmatona-Túri, T. & Kiss, B. Effects of roads and adjacent areas on diversity of terrestrial isopods of Hungarian highway verges. Biologia 72, 1486–1493 (2017). https://doi.org/10.1515/biolog-2017-0160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0160

Key words

Navigation