Skip to main content
Log in

Comparison of various techniques to estimate the extent and persistence of soil water repellency

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

New techniques to estimate the extent and persistence of soil water repellency (SWR) were compared with commonly used techniques in assessing the results taken in the long-term agricultural experimental orchards in northern Israel irrigated with either freshwater (FW), primary treated wastewater (WW) or (secondary or tertiary) treated wastewater (TWW), where SWR induced by irrigation was registered (Ha Ma’apil, Neve Etan, and Shafdan). The extent of SWR was assessed by the repellency index RI, combined repellency index RIc and modified repellency index RIm. The persistence of SWR was assessed by the water drop penetration time WDPT and water repellency cessation time WRCT. Soils from different textural classes were classified as slightly to strongly water repellent according to WDPT or RI values. Relationship between RIc and RI values can be well fitted by the linear equation, i.e., RIc could be a good substitute for RI. Relationships between WRCT and WDPT values as well as RIm and RIc or RI values cannot be accurately described by the linear equation, i.e., RIm is not a good substitute for RI for the values taken in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arye G., Tarchitzky J. & Chen Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. J. Hydrol. 397: 136–145.

    Article  CAS  Google Scholar 

  • Bachmann J., Krüger J., Göbel M.-O. & Heinze S. 2016. Occurrence and spatial pattern of water repellency in a beech forest subsoil. J. Hydrol. Hydromech. 64: 100–110.

    Google Scholar 

  • Beatty S.M. & Smith J.E. 2014. Infiltration of water and ethanol solutions in water repellent post wildfire soils. J. Hydrol. 514: 233–248.

    Article  CAS  Google Scholar 

  • Decagon 2012. Mini Disk Infiltrometer User’s Manual, Version 10. Decagon Devices, Inc., Pullman, 18 p.

    Google Scholar 

  • Dekker L.W. & Ritsema C.J. 1996. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. Catena 28: 89–105.

    Article  CAS  Google Scholar 

  • Dekker L.W., Oostindie K., Kostka S.J. & Ritsema C.J. 2005. Effects of surfactant treatments on the wettability of a water repellent grass-covered dune sand. Aust. J. Soil Res. 43: 383–395.

    Article  CAS  Google Scholar 

  • Diamantis V., Pagorogon L., Gazani E., Gkiougkis I., Pechtelidis A., Pliakas F., van den Elsen E., Doerr S.H. & Ritsema C.J. 2017. Use of clay dispersed in water for decreasing soil water repellency. Land Degrad. Develop. 28: 328–334.

    Google Scholar 

  • Doerr S.H., Shakesby R.A. & Walsh R.P.D. 2000. Soil water re-pellency: its causes, characteristics and hydro-geomorphologi-cal significance. Earth-Science Rev. 51: 33–65.

    Article  Google Scholar 

  • Fér M., Leue M., Kodešová R., Gerke H.H. & Ellerbrock R.H. 2016. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings. J. Hy-drol. Hydromech. 64: 111–120.

    Article  Google Scholar 

  • Guzmán-Osorio F.J. & Adams R.H. 2015. Mitigation of water repellency in the treatment of contaminated muds using the chemical-biological stabilization process. Int. J. Environ. Sci. Technol. 12: 2071–2078.

    Article  Google Scholar 

  • Hallett P.D., Baumgartl T. & Young I.M. 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Amer. J. 65: 184–190.

    Article  CAS  Google Scholar 

  • Keck H., Felde V.J.M.N.L., Drahorad S.L. & Felix-Henningsen P. 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. J. Hydrol. Hydromech. 64: 133–140.

    Article  Google Scholar 

  • Kořenková L., Šimkovic I., Dlapa P., Juráni B. & Matúš P. 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study. Soil & Water Res. 10: 78–89.

    Article  Google Scholar 

  • Lichner L., Dlapa P., Doerr S.H. & Mataix-Solera J. 2006. Evaluation of different clay minerals as additives for soil water repellency alleviation. Appl. Clay Sci. 31: 238–248.

    Article  CAS  Google Scholar 

  • Lichner Ľ., Hallett P.D., Feeney D., Ďugová O., Šír M. & Tesař M. 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia 62: 537–541.

    Article  Google Scholar 

  • Lichner L., Hallett P.D., Drongová Z., Czachor H., Kovacik L., Mataix-Solera J. & Homolák M. 2013. Algae influence hy-drophysical parameters of a sandy soil. Catena 108: 58–68.

    Article  Google Scholar 

  • Mataix-Solera J., Arcenegui V., Guerrero C., Mayoral A.M., Morales J., González J., García-Orenes F. & Gómez I. 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Proces. 21: 2300–2309.

    Article  Google Scholar 

  • Moradi A.B., Carminati A., Lamparter A., Woche S.K., Bachmann J., Vetterlein D., Vogel H.-J. & Oswald S.E. 2012. Is the rhizosphere temporarily water repellent? Vadose Zone J. 11(3). DOI: https://doi.org/10.2136/vzj2011.0120

    Google Scholar 

  • Nadav I., Arye G., Tarchitzky J. & Chen Y. 2012. Enhanced infiltration regime for treated-wastewater purification in soil aquifer treatment (SAT). J. Hydrol. 420-421: 275–283.

    Article  CAS  Google Scholar 

  • Nadav I., Tarchitzky J. & Chen Y. 2013. Induction of soil water repellency following irrigation with treated wastewater: effects of irrigation water quality and soil texture. Irrig. Sci. 31: 385–394.

    Article  Google Scholar 

  • Nadav I., Tarchitzky J. & Chen Y. 2017. Water repellency reduction using soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). J. Plant Nutr. Soil Sci. 180: 142–152.

    Article  CAS  Google Scholar 

  • Neris J., de la Torre S., Vidal-Vazquez E. & Lado M. 2017. Mitigation of water repellency in burned soils applying hydrophillic polymers. Geophysical Research Abstracts 19, EGU2017-19117-1.

  • Orfánus T., Dlapa P., Fodor N., Rajkai K., Sándor R. & Nováková K. 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Till. Res. 135: 49–59.

    Article  Google Scholar 

  • Orfánus T., Stojkovová D., Rajkai K., Czachor H. & Sándor R. 2016. Spatial patterns of wetting characteristics in grassland sandy soil. J. Hydrol. Hydromech. 64: 167–175.

    Article  Google Scholar 

  • Pekárová P., Pekár J. & Lichner L’. 2015. A new method for estimating soil water repellency index. Biologia 70: 1450–1455.

    Article  Google Scholar 

  • Roper M.M. 2006. Potential for remediation of water repellent soils by inoculation with wax-degrading bacteria in southwestern Australia. Biologia 19: S358–S362.

    Google Scholar 

  • Sándor R., Lichner L’., Filep T., Balog K., Lehoczky E. & Fodor N. 2015. Spatial variability of hydrophysical properties of fallow sandy soils. Biologia 70: 1468–1473.

    Article  Google Scholar 

  • Schacht K. & Marschner B. 2015. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 63: 47–54.

    Article  Google Scholar 

  • Schacht K., Chen Y., Tarchitzky J., Lichner L. & Marschner B. 2014. Impact of treated wastewater irrigation on water repel-lency of Mediterranean soils. Irrig. Sci. 32: 369–378.

    Article  Google Scholar 

  • Schonsky H., Peters A. & Wessolek G. 2014. Effect of soil water repellency on energy partitioning between soil and atmosphere: a conceptual approach. Pedosphere 24: 498–507.

    Article  Google Scholar 

  • Sepehrnia N., Hajabbasi M.A., Afyuni M. & Lichner L’. 2016. Extent and persistence of water repellency in two Iranian soils. Biologia 71: 1137–1143.

    Article  CAS  Google Scholar 

  • Soil Survey Division Staff. 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 p.

    Google Scholar 

  • Šurda P., Lichner Ľ., Nagy V., Kollár J., Iovino M. & Horel Á. 2015. Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia 70: 1474–1479.

    Article  Google Scholar 

  • Tarchitzky J., Lerner O., Shani U., Arye G., Lowengart-Aycicegi A., Brener A. & Chen Y. 2007. Water distribution pattern in treated wastewater irrigated soils: hydrophobicity effect. Eur. J. Soil Sci. 58: 573–588.

    Article  Google Scholar 

  • WRB 2006. World Reference Base for Soil Resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO, Rome.

    Google Scholar 

  • Zavala L.M., García-Moreno J., Gordillo-Rivero T.J., Jordán A. & Mataix-Solera J. 2014. Natural soil water repellency in different types of Mediterranean woodlands. Geoderma 226-227: 170–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľubomír Lichner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichner, Ľ., Rodný, M., Marschner, B. et al. Comparison of various techniques to estimate the extent and persistence of soil water repellency. Biologia 72, 982–987 (2017). https://doi.org/10.1515/biolog-2017-0112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0112

Key words