Abstract
Heritably transferred genome mutations extending phenotypic variability together with natural selection (alternatively with genetic drift, draft, stability, and passive selections) are the main conditions of species evolution. Intervals with high rates of detrimental mutations are virtually absent from the fossil record due to the difficulty of identifying them. Our evidence, based on living populations indicate that insect wing deformities represent heritable hypomorphic mutations that are similar to those observed in Chernobyl and Fukushima. Newly collected assemblages from two of the major diversification intervals, the Cretaceous (J/K or K1) Yixian Formation in China and Permian/Triassic (P/T) Poldars Formation in Russia, exhibit cockroach wing deformity rates of 27% and 42.5% (n = 120, 73), respectively. Wing deformity and principal, family rank origination rates (seven peaks each) correlate from the Mississippian/Pennsylvanian to the present (~ 320 Ma, n = 5059, r = 0.83, P = 0.005, rSpearman = 0.77), which is the first significant support for the association of detrimental mutations and evolution on the geological scale. It unexpectedly provides direct evidence for association of high-taxonomic rank changes and accumulation of mutations (which is neither trivial nor self-evident due to sophisticated patterns of gene flow), while this relationship is absent at species and genus levels. According to uncertainty of the numerical dating of non-marine sediments, a regular 62.05 ± 0.02 Ma periodicity of diversification and mass mutagenesis with the last peak at 3.95 ± 0.2 Ma (peaks possibly associated with origin and/or radiation of dinosaurs and frogs; birds and angiosperms; modern mammals; humans), is explanatory.
Similar content being viewed by others
References
Andersen P.L., Xu F. & Xiao W. 2008. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell. Res. 18 (1): 162–173. https://doi.org/10.1038/cr.2007.114
Anisyutkin L.N. 2002. Notes on the cockroaches of the subfamilies Pycnoscelinae and Diplopterinae from South-East Asia with description of three new species (Dictyoptera: Blaberidae). Zoosystematica Rossica 10 (2): 351–359.
Anisyutkin L.N. 2007. A new species of the genus Diploptera Saussure, 1864 from Borneo (Dictyoptera: Blaberidae: Diplopterinae). Zoosystematica Rossica 16 (2): 173–175.
Anisyutkin L.N. & Gorochov A.V. 2008. A new genus and species of the cockroach family Blattulidae from Lebanese Amber (Dictyoptera, Blattina). Paleontol. J. 42 (1): 43–46. https://doi.org/10.1134/S0031030108010061
Anisyutkin L.N. & Gröhn C. 2012. Novye tarakany (Dictyoptera: Blattina) iz Baltiĭskogo yantarya, s opisaniem novogo roda i vida: Stegoblatta irmgardgroehni [New cockroaches (Dictyopterra: Blattina) from Baltic amber, with the description of a new genus and species: Stegoblatta irmgardgroehni]. Trudy Zoologicheskogo Instituta RAS / Proceedings of the Zoological Institute RAS / 316 (3): 193–202.
Archibald S.B. & Mathewes R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Can. J. Zool. 78 (8): 1441–1462. https://doi.org/10.1139/cjz-78-8-1441
Aristov D.S. 2015. Insects from a new Ufimian Locality of Troitsa in the Perm Region, Russia. Paleontol. J. 49 (5): 496–500. https://doi.org/10.1134/S0031030115050032
Aristov D.S., Bashkuev A.S., Golubeva V.K., Gorochov A.V., Karasev E.V., Kopylov D.S., Ponomarenko A.G., Rasnitsyn A.P., Rasnitsyn D.A., Sinitshenkova N.D., Sukatsheva I.D. & Vassilenko D.V. 2013. Fossil Insects of the Middle and Upper Permian of European Russia. Paleontol. J. 47 (7): 641–832. https://doi.org/10.1134/S0031030113070010
Atri D. & Melott A.L. 2011. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model. Geophys. Res. Lett. 38 (19), L19203, 3 pp. https://doi.org/10.1029/2011GL049027
Bai M., Beutel R.G., Klass K.-D., Zhang W.W., Yang X.K. & Wipfler B. 2016. †Alienoptera - A new insect order in the roach-mantodean twilight zone. Gondwana Res. 39: 317–326. https://doi.org/10.1016/j.gr.2016.02.002
Barbieri M. 2003. The Organic Codes. An Introduction to Semantic Biology. Cambridge Univ Press, 312 pp. ISBN: 0521531004
Barna P. 2014. Low diversity cockroach assemblage from Chernovskie Kopi in Russia confirms deformations at J/K boundary. Biologia 69 (5): 651–675. https://doi.org/10.2478/s11756-014-0349-9
Barraclough T.G. & Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution 55 (4): 677–683. https://doi.org/10.1111/j.0014-3820.2001.tb00803.x
Batygin K. & Brown M.E. 2016. Evidence for a distant giant planet in the Solar system. Astron. J. 151 (2): 22, 12 pp. https://doi.org/10.3847/0004-6256/151/2/22
Bekker-Migdisova E.E. 1961. Otryad Blattodea. Tarakanovye [Order Blattodea. Cockroach-like insects], 2, pp. 89–157. In: Rodendorf B.B., Bekker-Megdicova E.E., Martynova O.M. & Sharov A.G. (eds), Paleozoĭskoe nasekomye Kuznetskogo basseĭna [Paleozoic insects of the Kuznetsk Basin], Trudy Paleontologicheskogo Instituta Rossĭlskoĭ akademii nauk [Trans. Paleontol. Inst. AS SSSR], 85 (2), Nauka, Moscow, 705 pp.
Bechly G. 2007. ‘Blattaria’: cockroaches and roachoids, pp. 239–249. In: Martill D., Bechly G. & Loveridge R.F. (eds), The Crato Fossil Beds of Brazil: Window into an Ancient World, Cambridge University Press, Cambridge, 674 pp. ISBN: 9780-521-85867-0
Benton M.J. 2004. Origin and relationships of Dinosauria, pp. 7–19. In: Weishampel D.B., Dodson P. & Osmolska H. (eds), The Dinosauria, Univ. California Press, Berkeley, 880 pp. ISBN: 0520941438, 9780520941434
Benton M.J., Walker A.D. 2002. Erpetosuchus, a crocodile-like basal archosaur from the Late Triassic of Elgin, Scotland. Zool. J. Linn. Soc. 136 (1): 25–47. https://doi.org/10.1046/j.1096-3642.2002.00024.x
Béthoux O., Schneider J.W. & Klass K.-D. 2011. Redescription of the holotype of Phyloblatta gaudryi (Agnus, 1903) (Pennsylvanian; Commentry, France), an exceptionally well preserved stem-dictyopteran. Geodiversitas 33 (4): 625–635. https://doi.org/10.5252/g2011n4a4.
Bohn H., Picker M., Klass K.-D. & Colville J. 2010. A Jumping Cockroach from South Africa, Saltoblattella montistabularis, gen. nov., spec. nov. (Blattodea: Blattellidae). Arthropod Syst. Phylogeny 68 (1): 53–69.
Bollati V. & Baccarelli V. 2010. Environmental epigenetics. Heredity 105: 105–112. https://doi.org/10.1038/hdy.2010.2
Bourguignon T., Lo N., Cameron S.L., Sobotnik J., Hayashi Y., Shigenobu S., Watanabe D., Roisin Y., Miura T. & Evans T.A. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32 (2): 406–421. https://doi.org/10.1093/molbev/msu308.
Breen M.S., Kemena C., Vlasov P.K., Notredame C. & Kondrashov F.A. 2012. Epistasis as the primary factor in molecular evolution. Nature 490: 535–538. https://doi.org/10.1038/nature11510
Bulmer M.G. 1972. The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genet. Res. 19 (1): 17–25. https://doi.org/10.1017/S0016672300
Carr M. 2002. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair (Amst.) 1 (12): 983–994. https://doi.org/10.1016/S1568-7864(02)00165-9
Castronovo F.P. 1999. Teratogen update: Radiation and Chernobyl. Teratology 60 (2): 100–106. https://doi.org/10.1002/(SICI)1096-9926(199908)60:2<100::AID-TERA14>3.0.CO;2-H
Cavalli-Sforza L.L. 2002. Human genetic and linguistic diversity, pp. E37–E53. In: Pagel M. (ed.), Encyclopedia of Evolution, Vol. 1, Oxford Univ Press, 556 pp. ISBN: 0-19-514864-9. 0.1093/acref/9780195122008.001.0001
Cave M.D. 1976. Absence of rDNA amplification in the uninucleolate oocyte of the cockroach Blattella germanica (Oorthoptera: Blattidae). J. Cell. Biol. 71 (1): 49–58. https://doi.org/10.1083/jcb.71.1.49
Che Y.L., Wang D., Shi Y., Du X.H., Zhao Y.Q., Lo N. & Wang Z.Q. 2016. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Mol. Phylogenet. Evol. 98: 201–209. https://doi.org/10.1016/j.ympev.2016.02.005
Cheng X.F., Zhang L.P., Yu D.N., Storey K.B. & Zhang J.Y. 2016. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 586 (1): 115–122. https://doi.org/10.1016/j.gene.2016.03.057.
Cifuentes-Ruiz P., Vršanský P., Vega F.J., Cevallos-Ferriz S.R.S., González-Soriano E. & Delgado de Jesús C.R. 2006. Terrestrial arthropods from the Cerro del Pueblo Formation (Campanian Late Cretaceous), Difunta Group, NE Mexico. Geol. Carpath. 57 (5): 347–354.
Cohen K.M., Finney S., Gibbard P.L. 2013. International chronostratigraphic chart 2013/01. International Commision on Stratigraphy. https://doi.org/www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf (accessed 06.08.2016)
Cornette J.L., Lieberman B.S. & Goldstein R.H. 2002. Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proc. Natl. Acad. Sci. U.S.A. 99 (12): 7832–7835. https://doi.org/10.1073/pnas.122225499
Cui Y. & Ren D. 2013. Neotype designation for Sinonamuropteris ningxiaensis Peng, Hong et Zhang, 2005 (Grylloblattida, Late Carboniferous). Zootaxa 3694: 596–599. https://doi.org/10.11646/zootaxa.3694.6.7
Čerňanský A. 2010. A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios 43 (6): 605–613. https://doi.org/10.1016/j.geobios.2010.04.001
Davis M., Hut P. & Muller R.A. 1984. Extinction of species by periodic comet showers. Nature 308: 715–717. https://doi.org/10.1038/308715a0
Ding Q.H., Zhang L.D., Guo S.Z., Zhang C.J., Peng Y.D., Jia B., Chen S.W. & Xing D.H. 2001. The stratigraphic sequence and fossil bearing horizon of the Yixian Formation in western Liaoning, China. Geology and Resources 10 (4): 193–198. [in Chinese with English abstract]
Djernaes M., Klass K.-D., Picker M.D. & Damgaard J. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Sys. Entomol. 37 (1): 65–83. https://doi.org/10.1111/j.1365-3113.2011.00598.x
Djernaes M., Klass K.D. & Eggleton P. 2015. Identifying possible sister groups of Cryptocercidae plus Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. Molec. Phylogenet. Evol. 84: 284–303. https://doi.org/10.1016/j.ympev.2014.08.019
Dmitriev V.J. & Ponomarenko A.G. 2002. Dynamics of insect taxonomic diversity, Chapter 3.1. pp. 325–330. In: Rasnitsyn A. P & Quicke D.L.J. (eds), History of Insects, Kluwer, Dodrecht, 516 pp. ISBN: 1-4020-0026-X
Dubrovsky E.B., Dretzen G. & Bellard M. 1994. The Drosophila broad-complex regulates developmental changes in transcription and chromatin structure of the 67 B heat-shock gene cluster. J. Mol. Biol. 241 (3): 353–362. https://doi.org/10.1006/jmbi.1994.1512
Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, Chapter 5, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Company, San Francisco, 250 pp. ISBN-10: 0877353255, ISBN-13: 978-0877353256
Eo S.H. & DeWoody J.A. 2010. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc. Roy. Soc. Ser. B Biol. Sci. Lond. 277 (1700): 3587–3592. https://doi.org/10.1098/rspb.2010.0965.
Esnault C., Cornelis G., Heidmann O. & Heidmann T. 2013. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genetics 9 (3): e1003400. https://doi.org/10.1371/journal.pgen.1003400
Evans S.E. 2003. At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biol. Rev. 78: 513–551. https://doi.org/10.1017/S1464793103006134
Evans S.E. & Borsuk-B Ontheiałynicka M. 2009. The Early Triassic stem-frog Czatkobatrachus from Poland. Palaeontol. Pol. 65: 79–105.
Evans K.L. & Gaston K.J. 2005. Can the evolutionary-rates hypothesis explain species-energy relationships? Funct. Ecol. 19 (6): 899–915. https://doi.org/10.1111/j.1365-2435.2005.01046.x
Flégr J. 1998. On the “Origin” of natural selection by means of speciation. Riv. Biol. — Biol. Forum 91: 291–304.
Flégr J. 2006. Zamrzlá evoluce aneb je to jinak pane Darwin [Frozen Evolution. Or, that’s not the way it is, Mr. Darwin]. Academia, Praha, 328 pp. ISBN: 978-80-200-1526-6
Flégr J. 2015. Evoluční tárí aneb o původů rodů. Academia, Praha, 404 pp. ISBN: 978-80-200-2481-7
Foote M. 2000. Originations and extinction components of taxonomic diversity: General problems. Paleobiology 26 (sp. 4): 74–102. https://doi.org/10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2
Friedberg E.C., Wagner R. & Radman M. 2002. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296 (5573): 162–165. https://doi.org/10.1126/science.1070236
Fujiyama I. 1973. Mesozoic insect fauna of East Asia. Part I. Introduction and Upper Triassic faunas. Bull. Natl. Sci. Mus. Tokyo C 16 (2): 331–391.
Gao T, Shih C., Engel M.S. & Ren D. 2016. A new xyelotomid (Hymenoptera) from the Middle Jurassic of China displaying enigmatic venational asymmetry. BMC Evol. Biol. 16: 155. https://doi.org/10.1186/s12862-016-0730-0
Gao G.Q. & Shubin N.H. 2003. Earliest known crown-group salamanders. Nature 422: 422–428. https://doi.org/10.1038/nature01491
Gillooly J.F., Allen A.P., West G.B. & Brown J.H. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 102 (11): 140–145. https://doi.org/10.1073/pnas.0407735101
Gillman L.N., Keeling D.J., Gardner R.C. & Wright S.D. 2010. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23 (6): 1327–1330. https://doi.org/10.1111/j.1420-9101.2010.01992.x.
Godefroit P., Cau A., Hu D.Y., Escuillié F., Wu W. & Dyke G. 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498: 359–362. https://doi.org/10.1038/nature12168
Goldie X., Lanfear R. & Bromham L. 2011. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol. Biol. 11: 286. https://doi.org/10.1186/1471-2148-11-286
Gorokhov A.V. 2007. New and little known orthopteroid insects (Polyneoptera) from fossil resins: Communication 2. Paleontol. J. 41 (2): 156–166. 10.1134
Gould S.J. & Eldredge N. 1993. Punctuated equilibrium comes of age. Nature 366: 223–227. https://doi.org/10.1038/366223a0
Gradstein F.M., Ogg J.G. & Smith A.G. (eds). 2005. A Geologic Time Scale 2004 (With Geologic Time Scale Poster), 610 pp. ISBN-13: 9780521786737, ISBN-10: 0521786738)
Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (eds). 2012. The Geologic Time Scale 2012. 1st ed. Amsterdam, Elsevier, 1176 pp. ISBN: 978-0-44-459425-9.
Griffiths A.J.F., Wessler S.R., Lewontin R.C. & Carrol S.B. 2008. Introduction to Genetic Analysis. 10. Freeman and Co, New York, 838 pp. ISBN: 0716768879, 9780716768876
Grimaldi D. & Engel M. 2005. Evolution of Insects. Cambridge Univ Press, New York, 772 pp. ISBN-10: 0521821495, ISBN-13: 978-0521821490
Guo Y., Béthoux O., Gu J. & Ren D. 2013. Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). J. Syst. Palaeontol. 11 (1): 41–46. https://doi.org/10.1080/14772019.2011.637519
Hesse-Honegger C. 2002. Heteroptera. Das Schöne und das Andere oder Bilder einer mutierenden Welt. Steidl Verlag, Göttingen, 312 pp. ISBN-10: 3882433604, ISBN-13: 9783882433609
Hiyama A., Nohara C., Kinjo S., Taira W., Gima S., Tanahara A. & Otaki J.M. 2012. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2: 570. https://doi.org/10.1038/srep00570
Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2003. First Permocarboniferous insects (blattids) from North Africa (Morocco) - implications on paleobiogeography and palaeo-climatology. Freiberger Forschungshefte C 499 (11): 117–134.
Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2005. Spiloblattinidae (Insecta, Blattida) from the Carboniferous of Morocco, North Africa - Implications for Biostratigraphy, pp. 111–114. In: Lucas S.G. & Zeigler K.E. (eds), The Nonmarine Permian, New Mexico Museum of Natural History and Science Bulletin No. 30, 362 pp.
Hmich D., Schneider J.W., Saber H., Voigt S. & El Wartiti M. 2006. New continental Carboniferous and Permian faunas of Morocco: implications for biostratigraphy, palaeobiogeography and palaeoclimate, pp. 297–324. In: Lucas S.G., Cassinis G., & Schneider J.W. (eds), Non-Marine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 351 pp. https://doi.org/10.1144/GSL.SP.2006.265.01.01. ISBN-10: 1-86239-206-4, ISBN-13: 978-1-86239-206-9
Hopkins H. 2014. A revision of the genus Arenivaga (Rehn) (Blattodea, Corydiidae), with descriptions of new species and key to the males of the genus. ZooKeys 384: 1–256. https://doi.org/10.3897/zookeys.384.6197
Hörnig M.K., Haug J.T. & Haug C. 2013. New details of Santanmantis axelrodi and the evolution of the mantodean morphotype. Palaeodiversity 6: 157–168.
Huang J.-H., Lozano J. & Belles X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830 (1): 2178–2187. https://doi.org/10.1016/j.bbagen.2012.09.025.
Huber P., McDonald N.G. & Olsen P.E. 2003. Early Jurassic insects from the Newark supergroup, Northeastern United States, pp. 206–223. In: LeTourneau P.M. & Olsen P.E. (eds), The Great Rift Valleys of Pangea in Eastern North America, Volume 2, Sedimentology, Stratigraphy, Paleontology, Columbia University Press, New York, 248 pp. ISBN: 0-231-12676-X, 9780231126762
Iorio L 2009. Constraints on planet X/Nemesis from Solar System’s inner dynamics. Mon. Not. Roy. Astron. Soc. 400 (1): 346–353. https://doi.org/10.1111/j.1365-2966.2009.15458.x
Irisarri I., San Mauro D., Abascal F., Ohler A., Vences M. & Zardoya R. 2012. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13: 626. https://doi.org/10.1186/1471-2164-13-626.
Jablonski D., Belanger C., Berke S., Huang S., Krug A.Z., Roy K., Tomasovych A. & Valentine J.W. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl. Acad. Sci. USA 110 (26): 10487–10494. https://doi.org/10.1073/pnas.1308997110
Janecka J., Chowdhary B. & Murphy W. 2012. Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J. Biosci. 37 (5): 897–909. https://doi.org/10.1007/s12038-012-9254-y
Jeon M.G. & Park Y.C. 2015. The complete mitogenome of the wood-feeding cockroach Cryptocercus kyebangensis (Blattodea: Cryptocercidae) and phylogenetic relations among cockroach families. Animal Cells and Systems 19 (6): 432–438. https://doi.org/10.1080/19768354.2015.1105866
Ji Q., Liu Y.G. & Jiang X.J. 2011. On the Lower Cretaceous in Yixian county of Jinzhou city, Western Liaoning, China. Acta Geol. Sin.-Eng. Ed. 85 (2): 437–442. https://doi.org/10.1111/j.1755-6724.2011.00411.x
Ji Q., Luo Z.X., Yuan C.X., Wible J.R. Zhang J.P. & Georgi J.A. 2002. The earliest known eutherian mammal. Nature 416: 816–822. https://doi.org/10.1038/416816a
Johnson L.J. & Tricker P.J. 2010. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105: 113–121. https://doi.org/10.1038/hdy.2010.25
Kaidanov L.Z., Bolshakov V.N., Tzygvintzev P.N. & Gvozdev V.A. 1991. The sources of genetic variability in highly inbred long-term selected strains of Drosophila melanogaster. Genetica 85 (1): 73–78. https://doi.org/10.1007/BF00056108
Kauffman S. 2004. Autonomous Agents, Part VI, Chapter 29, pp. 654–666. In: Barrow J.D., Davies P.C.W. & Harper C.L. Jr. (eds), Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Cambridge University Press, 742 pp. ISBN: 9780521831130
Kielan-Jaworowska Z., Cifelli R.L. & Luo Z.X. 2004. Mammals from the Age of Dinosaurs-origins, Evolution, and Structure. Columbia University Press, New York, 648 pp. ISBN-10: 0231119186, ISBN-13: 978-0231119184
Kikuchi R. 2010. External forces acting on the Earth’s climate: an approach to understanding the complexity of climate change. Energy & Environment 21 (8): 953–968. https://doi.org/10.1260/0958-305X.21.8
Kolbe S.E., Lockwood R. & Hunt G. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37 (3): 355–368. https://doi.org/10.1666/09073.1
Krassilov V.A. 2003. Terrestrial Paleoecology and Global Change. Series: Russian Academic Monographs 1, Pensoft, Sofia, Moscow, 480 pp. ISBN: 9546421537
Kunkel J.G. 2006. Are cockroaches resistant to radiation? https://doi.org/www.bio.umass.edu/biology/kunkel/cockroach_faq.html#Q5 (accessed 10.06.2006)
Labandeira C. 1994. A compendium of fossil insect families. Milwaukee Public Museum Contributions in Biology and Geology 88: 1–87.
Labandeira C. & Sepkoski J.J. 1993. Insect diversity in the fossil record. Science 261: 310–315. https://doi.org/10.1126/science.11536548
Lancaster L.T. 2010. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol. Biol. 10: 162. https://doi.org/10.1186/1471-2148-10-162
Lande R. 1976. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26 (3): 221–235. https://doi.org/10.1017/S0016672300016037
Lanfear R., Ho S.Y.W., Love D. & Bromham L. 2010. Mutation rate is linked to diversification in birds. Proc. Natl. Acad. Sci. USA 107 (47): 20423–20428. https://doi.org/10.1073/pnas.1007888107
Lee S.W. 2014. New Lower Cretaceous basal mantodean (Insecta) from the Crato Formation (NE Brazil). Geol. Carpath. 65 (4): 285–292. https://doi.org/10.2478/geoca-2014-0019
Lee S.W. 2016. Taxonomic diversity of cockroach assemblages (Blattaria, Insecta) of the Aptian Crato Formation (Cretaceous, NE Brazil). Geol. Carpath. 67 (5): 433–450. https://doi.org/10.1515/geoca-2016-0027
Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R. & Grandcolas P. 2015. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10 (7): e0130127. https://doi.org/10.1371/journal.pone.0130127
Li X. & Wang Z. 2015. A taxonomic study of the beetle cockroaches (Diploptera Saussure) from China, with notes on the genus and species worldwide (Blattodea: Blaberidae: Diplopterinae). Zootaxa 4018 (1): 35–56. https://doi.org/10.11646/zootaxa.4018.1.2.
Liang J.-H., Vršanský P. & Ren D. 2012. Variability and symmetry of a Jurassic nocturnal predatory cockroach (Blattida: Raphidiomimidae). Rev. Mex. Cienc. Geol. 29 (2): 411–421.
Liang J.-H., Yinxia G., Ren D. & Shih C. 2010. Blattodea — Survivors of the Fittest, Chapter 8, pp. 73–83. In: Ren D., Shih C., Gao T. & Yao Y.Y. (eds), Silent stories - Insect Fossil Treasures from Dinosaur Era of the Northeastern China, Science Press, Beijing, 322 pp. ISBN-10: 7030281918, ISBN-13: 9787030281913
Lucas S.G., Barrick J.E., Krainer K. & Schneider J.W. 2013. The Carboniferous-Permian boundary at Carrizo Arroyo, Central New Mexico, USA. Stratigraphy 10 (3): 153–170.
Lucańas C.C. & Lit I.L. Jr. 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterranean Biol. 19: 51–64. https://doi.org/10.3897/subtbiol.19.9804
Luhman K.L. & Sheppard S.S. 2014. Characterization of high proper motion objects from the wide-field infrared survey explorer. Astrophys. J. 787 (2): 126–126. https://doi.org/10.1088/0004-637X/787/2/126
Lukashevich E.D. 2011. New nematocerans (Insecta: Diptera) from the Late Jurassic of Mongolia. Paleontol. J. 45 (6): 620–628. https://doi.org/10.1134/S0031030111060098
Martínez-Delclós X. 1993. Blátidos (Insecta, Blattodea) del Cretácico Inferior de Espańa. Familias Mesoblattinidae, Blattulidae y Poliphagidae. Boletín Geológico y Minero 104 (5): 52–74
Martins-Neto R.G., Mancuso A. & Gallego O.F. 2005. La fauna de insectos triásicos de la Argentina. Blattoptera de la Formación Los Rastros (cuenca del Bermejo) provincia de La Rioja [The Triassic insect fauna from Argentina. Blattoptera from the Los Rastros Formation (Bemejo Basin), La Rioja Province.] Ameghiniana 42 (4): 705–723.
Martynov A.V. 1937. Liasovye nasekomye Shuraba I Kizil-Kin [Liassic insects from Shurab and Kisyl-Kiya], Part II. Blattodea. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 7 (1): 183–232.
Mayr E. 1976. Evolution and the Diversity of Life. 3rd ed. Belknap Press of Harvard University Press, Cambridge, 721 pp. ISBN: 0674271041, 9780674271043
Mayr G., Pohl B. & Peters D.S. 2005. A well-preserved Archaeopteryx specimen with theropod features. Science 310: 1483–1486. https://doi.org/10.1126/science.1120331
McDonald J.F. 1995. Transposable elements - possible catalysts of organismic evolution. Trends Ecol. Evol. 10 (1–3): 123–126. https://doi.org/10.1016/S0169-5347(00)89012-6
Medvedev M. & Melott A. 2006. The cosmogenic origin of the 62 Myr biodiversity oscillation. Astrobiology 6 (1): 240.
Melott A.L. & Bambach R.K. 2010. Nemesis reconsidered. Mon. Not. Roy. Astron. Soc. 407 (1): L99–L102. https://doi.org/10.1111/j.1745-3933.2010.00913.x
Melott A.L. & Bambach R.K. 2011. A ubiquitous similar to 62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37 (3): 383–408. https://doi.org/10.1666/09055.1
Melott A.L. & Bambach R.K. 2013. Do periodicities in extinction with possible astronomical connections survive a revision of the geological timescale? Astroph. J. 773 (1): 6. https://doi.org/10.1088/0004-637X/773/1/6
Melott A.L., Bambach R.K., Petersen K.D. & McArthur J.M. 2012. An ?60-million-year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: What does the periodicity reflect? J. Geol. 120 (2): 217–226. https://doi.org/10.1086/663877.
Mikó I., Copeland R.S., Balhoff J.P., Yoder M.J. & Deans A.R. 2014. Folding wings like a cockroach: A review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania) PLoS One 9 (5): e94056. https://doi.org/10.1371/journal.pone.0094056
Mikulíček P., Jandzik D., Fritz U., Schneider C. & Široký P. 2013. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108 (1): 151–160. https://doi.org/10.1111/j.1095-8312.2012.01999.x
Mugat B., Brodu V., Kejzlarova-Lepesant J., Antoniewski C., Bayer C.A., Fristrom J.W. & Lepesant J.A. 2000. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Devel. Biol. 227 (1): 104–117. https://doi.org/10.1006/dbio.2000.9879
Nalepa C.A. 2015. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40 (4): 323–335. https://doi.org/10.1111/een.12197
Nicholson D.B., Mayhew P.J. & Ross A.J. 2015. Changes to the fossil record of insects through fifteen years of discovery. PLoS One 10 (7): e0128554. https://doi.org/10.1371/journal.pone.0128554
Nicholson D.B., Ross A.J. & Mayhew P.J. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proc. Roy. Soc. B 281 (1793): 20141823. https://doi.org/10.1098/rspb.2014.1823
Novozhenov Y.I. & Korobizyn N.M. 1972. Aberrativnaya izmenchivosf v prirodnykh populyatsiyakh nasekomykh [Aberrant variation in natural insect populations]. Zh. Obshch. Biol. 33 (3): 315–324.
Oružinský R. & Vršanský P. 2017. Cockroach forewing area and venation variabilities relate. Biologia 72: 813–817. https://doi.org/10.1515/biolog-2017-0090
Padian K. 1997. Origin of Dinosaurs, pp. 481–486. In: Currie P.J. & Padian K. (eds), Encyclopedia of Dinosaurs, Academic Press, New York, 869 pp. ISBN: 9780122268106
Papier F., Grauvogel-Stamm L. & Nel A. 1994 Subioblatta undulata n. sp., a new Blattodea (Subioblattidae Schneider) from the Upper Bunter (Anisian) of the Vosges Mountains (France). Morphology, systematics and affinities. Neues Jahrbuch fur Geologie und Paläontologie, Monatshefte 1994 (5): 277–290.
Papier F. & Grauvogel-Stamm L. 1995. Les Blattodea du Trias: Le genre Voltziablatta n. gen. du Buntsandstein supérieur des Vosges (France) [The Triassic Blattodea: The genus Voltziablatta n. gen. from the Upper Bunter of the Vosges Mountains (France)]. Paleontographica A 235 (4–6): 141–162.
Picker M., Colville J.F. & Burrows M. 2012. A cockroach that jumps. Biol. Lett. 8 (3): 390–392. https://doi.org/10.1098/rsbl.2011.1022
Piton L.E. 1936. Les Orthopteres tertiaires d’Auvergne. Misc. Entomol. 37: 77–79.
Piton L.E. 1940. Paléontologie du gisement éocčne de Menat (Puy-de-Dôme) (flore et faune). Mémoires de la Société d’Histoire Naturelle d’Auvergne, Clermont-Ferrand 1: 1–303.
Poinar G. & Brown A.E. 2017. An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. Cretaceous Res. 72: 100–104. https://doi.org/10.1016/j.cretres.2016.12.011
Ponomarenko A.G. 2016. Insects during the time around the Permian-Triassic crisis. Paleontol. J. 50 (2): 174–186. https://doi.org/10.1134/S0031030116020052
Potgieter M., Ferreira S. & Du Toit S. 2011. Galactic cosmic rays in the dynamic heliosphere, pp. 441–453. In: Giani S., Leroy C. & Rancoita P.G. (eds), Cosmic Rays For Particle and Astroparticle Physics Book Series: Astroparticle Particle Space Physics Radiation Interaction Detectors and Medical Physics Application Vol. 6, 668 pp. ISBN: 978-981-4329-02-6
Qin J. & Li L. 2003. Molecular anatomy of the DNA damage and replication checkpoints. Radiat. Res. 159 (2): 139–148. https://doi.org/10.1667/0033-7587(2003)159[0139:MAOTDD]2.0.CO2
Rage J.C. & Roček Z. 1989. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the Early Triassic. Palaeontographica A 206 (1–3): 1–16.
Ramel C. 1989. The nature of spontaneous mutations. Mutat. Res. 212 (1): 33–42. https://doi.org/10.1016/0027-5107(89)90020-1
Rasnitsyn A.P. 2002. Protsess evolyutsii i metodologya sistematiki [Evolutionary process and methodology of systematics]. Ňr. Russ. Entomol. Obshch. [Proc. Russ. Entomol. Soc.] 73: 1–108.
Rasnitsyn A.P., Bashkuev A.S., Kopylov D.S., Lukashevich E.D., Ponomarenko A.G., Popov J.A., Rasnitsyn D.A., Ryzhkova O.V., Sidorchuk E.A., Sukatsheva I.D. & Vorontsov D.D. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Res. 61: 234–255. https://doi.org/10.1016/j.cretres.2015.12.025
Rasnitsyn A.P. & Quicke D.L.J. (eds). 2002. History of Insects. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 517 pp. ISBN: 978-1-4020-0026-3
Raup D.M. & Sepkoski J.J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215: 1501–1503. https://doi.org/10.1126/science.215.4539.1501
Reddy G.P.V. & Chippendale G.M. 1972. Observations on the nutritional requirements of the northwestern corn borer Diatraea grandiosella. Entomol. Exp. Appl. 15 (1): 51–60. https://doi.org/10.1111/j.1570-7458.1972.tb02083.x
Rifkin S.A., Houle D., Kim J. & White K.P. 2005. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438: 220–223. https://doi.org/10.1038/nature04114
Ross A.J. 2001. The Purbeck and Wealden cockroaches and their potential use in biostratigraphy. Thesis (Ph.D.), University of Brighton.
Ross A.J. 2012. Testing decreasing variability of cockroach forewings through time using four Recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Sci. 19 (2): 129–142. https://doi.org/10.1111/j.1744-7917.2011.01465.x
Russell P.J. 2002. IGenetics. Benjamin Cummings, San Francisco, 828 pp. ISBN: 0805345531 9780805345537
Sendi H. & Azar D. 2017. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Res. 72: 13–17. https://doi.org/10.1016/j.cretres.2016.11.013
Sereno P.C. 1999. The evolution of dinosaurs. Science 284: 2137–2147. https://doi.org/10.1126/science.284.5423.2137
Shaviv N.J. 2003. The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8 (1): 39–77. https://doi.org/10.1016/S1384-1076(02)00193-8
Shaviv N.J. 2005. On the link between cosmic rays and terrestrial climate. Int. J. Mod. Phys. A 20: 6662–6665. https://doi.org/10.1142/S0217751X05029733
Shaviv N.J. & Veizer J. 2003. Celestial driver of Phanerozoic climate? GSA Today 13 (7): 4–10.
Shcherbakov D.E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42 (1): 15–31. https://doi.org/10.1134/S0031030108010036
Shcherbakov D.E. 2013. Permian ancestors of Hymenoptera and Raphidioptera. Zookeys 358: 45–67. https://doi.org/10.3897/zookeys.358.6289
Shrivastav M., De Haro L.P. & Nickoloff J.A. 2008. Regulation of DNA double-strand break repair pathway choice. Cell. Res. 18 (1): 134–147. https://doi.org/10.1038/cr.2007.111
Shubin N.H. & Jenkins F.A. Jr. 1995. An Early Jurassic jumping frog. Nature 377: 49–52. https://doi.org/10.1038/377049a0
Schmied H. 2009. Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn, 81 pp.
Schneider J.W. 1977. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil I. Freiberger Forschungshefte C 326: 87–105.
Schneider J.W. 1978a. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil II. Freiberger Forschungshefte C 334: 21–39.
Schneider J.W. 1978b. Zum Taxonomie und Biostratigraphie der Blattodea (Insecta) des Karbon und Perm der DDR. Freiberger Forschungshefte C 340: 1–152.
Schneider J.W. 1978c. Revision der Poroblattinidae (Insecta, Blattodea) des europäischen und nordamerikanischen Oberkarbon und Perm. Freiberger Forschungshefte C 342: 55–66.
Schneider J.W. 1980a. Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (CSSR), Teil I: Mylacridae (Insecta, Blattodea). Freiberger Forschungshefte C 357: 43–55.
Schneider J.W. 1980b. Zur Taxonomie der jungpaläozoischen Neorthroblattinidae (Insecta, Blattodea). Freiberger Forschungshefte C 348: 31–39.
Schneider J.W. 1983. Die Blattodea (Insecta) des Paläozoikums, Teil 1: Systematik, Ökologie und Biostratigraphie. Freiberger Forschungshefte C 382: 107–146.
Schneider J.W. 1984. Die Blattodea (Insecta) des Paläozoikums, Teil 2: Morphogenese der Flügelstrukturen und Phylogenie. Freiberger Forschungshefte C 391: 5–34.
Schneider J.W., Lucas S.G. & Barrick J. 2013. The Early Permian age of the Dunkard Group, Appalachian basin, U.S.A., based on spiloblattinid insect biostratigraphy. Int. J. Coal Geol. 119 (SI): 88–92. https://doi.org/10.1016/j.coal.2013.07.019
Schneider J.W., Lucas S.G. & Rowland J.M. 2004. The Blattida (Insecta) fauna of Carrizo Arroyo, New Mexico — Biostratigraphic link between marine and nonmarine Pennsylvanian/Permian boundary profiles, pp. 247–261. In: Lucas S.G. & Zeigler K.E. (eds), Carboniferous-Permian Transition at Carrizo Arroyo, Central New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 25, 300 pp.
Schneider J.W. & Werneburg R. 1993. Neue Spiloblattinidae (Insecta, Blattodea) aus dem Oberkarbon und Unterperm von Mitteleuropa sowie die Biostratigraphie des Rotliegend. Veroff. Naturhist. Mus. Schleusingen 7/8: 31–52.
Schneider J.W. & Werneburg R. 2006. Insect biostratigraphy of the European late Carboniferous and early Permian, pp. 325–336. In: Lucas S.G., Cassinis G. & Schneider J.W. (eds), Nonmarine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 352 pp. ISBN: 1-86239-206-4, 978-1-86239-206-9
Schwarzbach M. 1939. Die älteste Insektenflügel. Bemerkungen zu einem oberschlesischen Funde. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines N.F. 1939: 28–30.
Signor P.W. & Lipps J.H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, pp. 291–296. https://doi.org/10.1130/SPE190-p291. In: Silver L.T. & Schultz P.H. (eds), Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America, Special Paper 190, 546 pp. ISBN: 9780813721903. https://doi.org/10.1130/SPE190
Sinitshenkova N.D. 2000. Novye podenky iz verkhnemezozoĭskogo zabaĭkal’skogo mesonakhozhdeniyab Chernovskie Koli (Insecta: Ephemerida = Ephemeroptera) [New mayflies from the Upper Mesozoic Transbaikalian locality Chernovskie Kopi (Insecta: Ephemerida = Ephemeroptera)]. Paleontol. J. 34: 63–69.
Sinitza S.M. 1995. Chernovskiĭ paleontologocheskiĭ zapovednik [Chernovskii Paleontological Reserve]. Vest. Khiin. Politech. Univ. [Jubilee. Ed. Bull. Chita Polytech. Inst. Mosk. Gos. Univ.] 1: 70–84.
Šmídová L. & Lei X. 2017. The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Res. 72: 189–199. https://doi.org/10.1016/j.cretres.2017.01.008
Solórzano Kraemer M.M. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica A 282 (1–6): 1–133. https://doi.org/10.1127/pala/282/2007/1
Sosov R.F 1955. Theoretical significance of mutation of microorganisms; consideration on publication of S.N. Muromtsev’s book, Variability of microorganisms in the problem of immunity, 1953. Zh. Mikrobiol. Epidemiol. Immunobiol. 12: 3–8. PMID: 13300910
Stindl R. 2014. The telomeric sync model of speciation: specieswide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the salutatory appearance of nonadaptive characters. Naturwissenschaften 101: 163–186. https://doi.org/10.1007/s00114-014-1152-8
Sukatsheva I.D. & Vassilenko D.V. 2011. Caddisflies from Chernovskie Kopi (Jurassic/Cretaceous of Transbaikalia). Zoosymposia 5: 434–438.
Svensmark H. 1998. Influence of Cosmic Rays on Earth’s Climate. Phys. Rev. Lett. 81 (22): 5027–5030. https://doi.org/10.1103/Phys-RevLett.81.5027
Taberlet P., Zimmermann N.E., Englisch T., Tribsch A., Holderegger R., Alvarez N., Niklfeld H., Coldea G., Mirek Z., Moilanen A., Ahlmer W., Marsan P.A., Bona E., Bovio M., Choler P., Cieślak E., Colli L., Cristea V., Dalmas J.P., Frajman B., Garraud L., Gaudeul M., Gielly L., Gutermann W., Jogan N., Kagalo A.A., Korbecka G., Küpfer P., Lequette B., Letz D.R., Manel S., Mansion G., Marhold K., Martini F., Negrini R., Nińo F., Paun O., Pellecchia M., Perico G., Piękoś-Mirkowa H., Prosser F., Puşcaş M., Ronikier M., Scheuerer M., Schneeweiss G.M., Schönswetter P., Schratt-Ehrendorfer L., Schüpfer F., Selvaggi A., Steinmann K., Thiel-Egenter C., van Loo M., Winkler M., Wohlgemuth T., Wraber T., Gugerli F., IntraBioDiv Consortium & Vellend M. 2012. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15 (12): 1439–1448. https://doi.org/10.1111/ele.12004.
Tolley K.A., Tilbury C.R., Measey G.J., Menegon M., Branch W.R. & Matthee C.A. 2011. Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. J. Biogeogr. 38 (9): 1748–1760. https://doi.org/10.1111/j.1365-2699.2011.02529.x
Townsend T. & Larson A. 2006. Molecular phylogenetics and mitochondrial genomic evolution in the Chamaeleonidae (Reptilia, Squamata). Molec. Phylogenet. Evol. 23 (1): 22–36. https://doi.org/10.1006/mpev.2001.1076
Trujillo C.A. & Sheppard S.S. 2014. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507: 471–474. https://doi.org/10.1038/nature13156
Vassilenko D.V. 2005a. Damages on mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontol. J. 39 (6): 54–59.
Vassilenko D.V. 2005b. New damselflies (Odonata: Synlestidae, Hemiphlebiidae) from Mesozoic Transbaikalian locality of Chernovskie Kopi. Paleontol. J. 39 (3): 55–58.
Vd’ačný P., Rajter Ľ., Shazib S.U.A., Jang S.W. & Shin M.K. 2017. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group. Scientific Reports 7. https://doi.org/10.1038/s41598-017-09472-y
Vidal N., Rage J.C., Couloux A. & Hedges S.B. 2009. Snakes (Serpentes), pp. 390–397. In: Hedges S.B. & Kumar S. (eds), The Timetree of Life, Oxford University Press, New York, 572 pp. ISBN: 9780199535033
Vidlička L., Vršanský P., Kúdelová T., Kúdela M., Deharveng L. & Hain M. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232 (3): 361–375. https://doi.org/10.11646/zootaxa.4232.3.5
Vishnyakova V.N. 1964. Dopolnitel’nye znaki krovenosnykh sosudov na perednikh kryl’yakh novykh tarakanov verchneĭ yury [Additional characters of wing venation in forewings of a new Upper Jurassic cockroach]. Paleontol. J. 1964 (1): 82–87.
Vishnyakova V.N. 1968. Mezozoĭskie tarakany s naruzhnym yaĭtseladom i osobennosti ikh razmnozhniya (Blattodea) [Mesozoic cockroaches with external ovipositor and peculiarities of their reproduction], pp. 55–86. In: Rohdendorf B.B. (ed.), Yurskie nasekomye Karatau [Jurassic Insects of Karatau], Nauka, Moscow, 252 pp.
Vishnyakova V.N. 1973. Novye tarakany (Insecta: Blattodea) iz verkhneyurskikh otlozheniĭ khrebta Karatau [New cockroaches (Insecta: Blattodea) from the Upper Jurassic of Karatau mountains]. Doklady na 24. Jezhegodnom chtenii pamyati N.A. Kholodkowskogo, pp. 64–77.
Vishnyakova V.N. 1998. Tarakany (Insecta, Blattodea) iz triasovogo mestonakhozhdeniya Madygen, Srednyaya Aziya [Cockroaches (Insecta, Blattodea) from the Triassic of the Madygen, Central Asia], Paleontol. Zh. 5: 69–76.
Visscher H., Looy C.V., Collinson M.E., Brinkhuis H., van Konijnenburg-van Cittert J.H.A., Kürschner W.M. & Sephton M.A. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl. Acad. Sci. USA 101 (35): 12952–12956. https://doi.org/10.1073/pnas.0404472101
Vršanský P. 1997. Piniblattella gen. nov. - the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomol. Probl. 28 (1): 67–79.
Vršanský P. 1999. The Blattaria Fauna of the Lower Cretaceous of Baissa in Transbaikalian Siberia. Diploma Thesis, Comenius University, Bratislava.
Vršanský P. 2000. Decreasing variability — from the Carboniferous to the Present! (Validated on Independent Lineages of Blattaria). Paleontol. J. 34 (Suppl. 3): 374–379.
Vršanský P. 2002. Origin and the Early Evolution of Mantises. Amba Projekty 6: 1–16.
Vršanský P. 2003a. Unique assemblage of Dictyoptera (Insecta-Blattaria, Mantodea, Isoptera, Mantodea) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol. Probl. 33 (1-2): 119–151.
Vršanský P. 2003b. Umenocoleoidea - an amazing lineage of aberrant insects (Insecta, Blattaria). Amba Projekty 7 (1): 1–32.
Vršanský P. 2004. Transitional Jurassic/Cretaceous cockroach massemblage (Insecta, Blattaria) from the Shar-Teg in Mongolia. Geol. Carpath. 55 (6): 457–468.
Vršanský P. 2005. Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol. Carpath. 56 (6): 473–781.
Vršanský P. 2008. New blattarians and a review of dictyopteran assemblages from the Lower Cretaceous of Mongolia. Acta Palaeontol. Pol. 53 (1): 129–136. https://doi.org/10.4202/app.2008.0109
Vršanský P. 2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31 (1): 73–98. https://doi.org/10.5252/g2009n1a7
Vršanský P. 2010. Cockroach as the earliest eusocial animal. Acta. Geol. Sin. - Engl. Ed. 84 (4): 793–808. https://doi.org/10.1111/j.1755-6724.2010.00261.x
Vršanský P. & Ansorge J. 2007. Lower Jurassic cockroaches (Insecta: Blattaria) from Germany and England. Afr. Invertebr. 48 (1): 103–126.
Vršanský P. & Aristov D. 2012. Enigmatic Late Permian cockroaches from Isady, Russia (Blattida: Mutoviidae fam. n.). Zootaxa 3247: 19–31. https://doi.org/10.5281/zenodo.213150
Vršanský P. & Aristov D. 2014. Termites from the Jurassic/Cretaceous boundary; evidence for the longevity of their earliest genera. Eur. J. Entomol. 111 (1): 137–141. https://doi.org/10.14411/eje.2014.014
Vršanský P. & Bechly G.N. 2015. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. Geol. Carpath. 66 (2): 133–138. https://doi.org/10.1515/geoca-2015-0015
Vršanský P., Cifuentes-Ruiz P., Vidlička L., Ciampor F. Jr. & Vega F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geol. Carpath. 62 (5): 463–475. https://doi.org/10.2478/v10096-011-0033-8
Vršanský P., Liang J.-H. & Ren D. 2009. Advanced morphology and behaviour of extinct earwig-like cockroaches (Blattida: Fuziidae). Geol. Carpath. 60 (6): 449–462. https://doi.org/10.2478/v10096-009-0033-0
Vršanský P., Liang J.-H. & Ren D. 2012. Malformed cockroach (Insecta: Blattida: Liberiblattinidae) from the Middle Jurassic of Daohugou in Inner Mongolia, China. Orient. Insects 46 (1): 12–18. https://doi.org/10.1080/00305316.2012.675482
Vršanský P. & Makhoul E. 2013. Mieroblattina pacis gen. et sp. n. — Upper Cretaceous cockroach (Blattida: Mesoblattinidae) from Nammoura limestone of Lebanon, pp. 167–172. In: Azar D., Engel M., Jarzembowski E., Krogmann L., Nel A. & Santiago-Blay J. (eds), Insect Evolution in an Ambiferous and Stone Alphabet, Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber, Brill, Leiden, 210 pp. ISBN13: 9789004210707
Vršanský P., Oružinský R., Barna P., Vidlička L. & Labandeira C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River formation of Colorado and its reintroduction to North America 49 million years later. Ann. Am. Entomol. Soc. 107 (1): 28–36. https://doi.org/10.1603/AN13042
Vršanský P.V., Šmídová L., Valaška D., Barna P., Vidlička L., Takáč P., Pavlik L., Kúdelová T., Karim T.S., Zelagin D. & Smith D. 2016. Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. Sci. Nat. 103 (9–10): 78. https://doi.org/10.1007/s00114-016-1398-4
Vršanský P., Vidlička L’., Barna P., Bugdaeva Z. & Markevich V. 2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635 (2): 117–126. https://doi.org/10.11646/zootaxa.3625.2.2
Vršanský P., Vidlička L., Čiampor F. Jr. & Marsh F. 2012. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Sci. 19 (2): 143–152. https://doi.org/10.1111/j.1744-7917.2010.01390.x
Waddington C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565. https://doi.org/10.1038/150563a0
Waddington C.H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654–1655. https://doi.org/10.1038/1831654a0
Wang C.C., Wang Z.Q. & Che Y.L. 2016. Protagonista lugubris, a cockroach species new to China and its contribution to the revision of genus Protagonista, with notes on the taxonomy of Archiblattinae (Blattodea, Blattidae). ZooKeys 574: 57–73. https://doi.org/10.3897/zookeys.574.7111
Wang C.D. 2013. Nuurcala obesa sp. n. (Blattida, Caloblattinidae) from the Lower Cretaceous Yixian Formation in Liaoning Province, China. Zookeys 318: 35–46. https://doi.org/10.3897/zookeys.318.5514
Wang T.-T., Liang J.-H. & Ren D. 2007a. Variability of Habroblattula drepanoides gen. et. sp. nov. (Insecta: Blattaria: Blattulidae) from the Yixian Formation in Liaoning, China. Zootaxa 1443: 17–27. https://doi.org/10.5281/zenodo.176061
Wang T.-T., Liang J.-H., Ren D. & Shi C. 2007b. New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China. Ann. Zool. 57 (3): 483–495.
Wang X., Shi Y., Wang Z. & Che Y. 2014a. Revision of the genus Salganea Stål (Blattodea, Blaberidae, Panesthiinae) from China, with descriptions of three new species. ZooKeys 412: 59–87. https://doi.org/10.3897/zookeys.412.7134
Wang X.D., Wang Z.G. & Che Y.L. 2014b. A taxonomic study of the genus Panesthia (Blattodea, Blaberidae, Panesthiinae) from China with descriptions of one new species, one new subspecies and the male of Panesthia antennata. ZooKeys 466: 53–75. https://doi.org/10.3897/zookeys.466.8111
Wang Y., Ren D. & Shih C. 2007c. New discovery of Palaeontinid fossils from the Middle Jurassic in Daohugou, Inner Mongolia (Homoptera, Palaeontinidae). Science in China Series D: Earth Sciences 50 (4): 481–486 https://doi.org/10.1007/s11430-007-0029-5
Wang Z.Q. & Che Y.L. 2013. Three new species of cockroach genus Symploce Hebard, 1916 (Blattodea, Ectobiidae, Blattellinae) with redescriptions of two known species based on types from Mainland China. ZooKeys 337: 1–18. https://doi.org/10.3897/zookeys.337.5770
Webster M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317: 499–502. https://doi.org/10.1126/science.1142964
Wei T.T. & Ren D. 2013. Completely preserved cockroaches of the family Mesoblattinidae from J/K Yixian Formation, China. Geol. Carpath. 64 (4): 291–304. https://doi.org/10.2478/geoca-2013-0021
Weissert H. & Mohr H. 1996. Late Jurassic climate and its impact on carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 122 (1–4): 27–43. https://doi.org/10.1016/0031-0182(95)00088-7
Weterings E. & Chen D.J. 2008. The endless tale of nonhomologous end-joining. Cell Res. 18 (1): 114–124. https://doi.org/10.1038/cr.2008.3
Willis K.J., Bennett K.D. & Birks H.J.B. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36 (9): 1630–1644. https://doi.org/10.1111/j.1365-2699.2009.02102.x
Winterton S.L. 2006. Aberrant wing venation in the green lacewing Apochrysa lutea (Walker) (Neuroptera: Chrysopidae: Apochrysinae). Austral. Entomol. 33 (3): 143–146.
Yang W. & Li S.G. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos 102 (1–2): 88–117. https://doi.org/10.1016/j.lithos.2007.09.018
Yang W., Li S.G. & Jiang B.Y. 2007. New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-PbSHRIMP dating of the Yixian Formation in Sihetun, northeast China. Cretaceous Res. 28 (2): 177–182. https://doi.org/10.1016/j.cretres.2006.05.011
Zhang Z., Schneider J.W. & Hong Y. 2013. The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. J. Syst. Paleontol. 11 (1): 27–40. https://doi.org/10.1080/14772019.2011.634443
Zherikhin V.V. 1987. Biocoenotic regulation and evolution. Paleontol. J. 21 (1): 12–19.
Zherikhin V.V., Mostovski M.B., Vrsansky P., Blagoderov V.A. & Lukashevich E.D. 1999. The unique Lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in North and West Transbaikalia, pp. 185–192. In: Vršanský P (ed.), Proc 1st Palaeoentomol Conf, Moscow 1998, Amba projekty, Bratislava.
Żyła D., Wegierek P., Owocki K. & Niedźwiedzki G. 2013. Insects and crustaceans from the latest Early-early Middle Triassic of Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371: 136–144. https://doi.org/10.1016/j.palaeo.2013.01.002
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Vršanský, P., OruŘinský, R., Aristov, D. et al. Temporary deleterious mass mutations relate to originations of cockroach families. Biologia 72, 886–912 (2017). https://doi.org/10.1515/biolog-2017-0096
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1515/biolog-2017-0096